small isc logo

Chuiko Institute of Surface Chemistry

National Academy of Sciences of Ukraine
(official site)

852

Дорогі, шановні і чарівні пані! 

 

Щиро вітаємо вас зі святом Весни! Бажаємо бути щасливими, здоровими, оточеними ніжністю і турботою. Нехай вас завжди супроводжує впевненість у завтрашньому дні, а кожен новий день приносить лише радість та посмішки!

 

Милі пані, будьте щасливі і відкриті для нових, прекрасних горизонтів! Зі святом Вас!

   

Department of Chemisorption and hybrid materials

 tert

 

 

Head of Laboratory

Tertykh Valentyn A.

Doctor of Sciences (Chemistry),

Professor

Telephone: + 380 44 422-96-73

Fax: + 380 44 424-35-67

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; tertykh@voliacable.сom

 

Laboratory staff is 11 co-workers including 1 DSc and 7 PhDs.  From 1986, the Department researchers have published 2 books, 9 chapters in collective monographs, 250 scientific articles, obtained 39 patents for invention; 1 doctoral and 7 candidate dissertations were defended.

 

Directions of investigations

Study of the regularities of the processes of chemisorption in the surface layer of disperse oxides, chemical and geometric modification of solids, including the use of template and sol-gel methods, development of methods of immobilization of active compounds on inorganic matrices, investigation of adsorption equilibria from solutions. Practical direction of work is related to the development of specific adsorbents based on modified oxides, heterogeneous catalysts, active fillers of polymeric systems, chemo- and biosensors, nanocomposites.

 

Main results for the recent years

The syntheses of nanoparticles of noble metals (Pd, Ag, Pt, Au) immobilized on chemically modified silica matrices with defined structural characteristics and surface nature were carried out. The approaches to regulate the sizes of immobilized nanoparticles have been developed due to the use of silica with different content of grafted silicon hydride groups, the variation of the concentration of ions of the corresponding metal in the solution, and application of matrices with different parameters of the porous structure.

The adsorption characteristics and kinetic properties of complexing and ion-exchanging chemically modified silicas have been studied. Such adsorbents were obtained with the use of a one-stage Mannich reaction for the immobilization of organic phenol-type ligands, by anchorage of guanidine-containing polymers, by the implementation of oxidative polymerization of aniline and the formation of a layer of ionens on the surface of silica particles directly at the time of polymer formation (in situ immobilization).

A significant decrease in the rate of desorption of sodium diclofenac was found when using highly dispersed chemically modified silicas as a carrier. It has been established that it is possible to control the degree of release of the drug over a wide time range by varying the porous structure and nature of the surface of the silica carrier and using a chitosan-based matrix, whose properties can be altered by introducing a crosslinking reagent, protonation or deprotonation of amino groups of a polymer.

Composites of the mineral carrier-chitosan have been synthesized by crosslinking the adsorbed biopolymer and using covalent immobilization and sol-gel transformations. It was shown that organomineral compositions based on silica gel, clinoptilolite, saponite and chitosan exhibit the best adsorption properties for metal-containing oxoanions in comparison with adsorption of cations from aqueous solutions. By implantation of phosphinic acid on amino groups of chemically modified silica with the help of carbonyldiimidazole, a new phosphorus-containing adsorbent has been obtained that effectively absorbs uranium ions from the acidic medium, the sorption equilibrium is established within 1 h, and the sorption kinetics corresponds to the pseudo-second order model.

It was shown that silica composites with chitosan and carrageenan exhibit relatively high sorption capacities relative to dyes of anionic and cationic types, respectively, possessing satisfactory kinetic characteristics, which confirms the possibility of their effective application in the process of purification of technological solutions.

The luminescent properties of pyrolysis products of silica-based sol-gel composites with some organic precursors have been studied.

Use for chemical modification of the surface of pyrogenic silica the mixtures of polyorganosiloxane with alkyl carbonates was found to allow one to carry out chemisorption processes at the relatively moderate temperatures and to obtain modified silica with high content of grafted organic groups. The possibility of splitting the siloxane bond Si-O under the action of dimethyl carbonate in both organosiloxane and on the surface of silica has been proved.

Methods of one-stage synthesis of mesoporous silicas with complexing and ion exchanging (amine, ammonium, thiol, thiourea and phosphonic) groups have been elaborated using sol-gel and template methods. Morphology of the obtained materials was studied using the electronic and atomic force microscopies, the composition and structure of their surface were determined by methods of vibrational and solid-state NMR spectroscopies. The sorption properties of synthesized materials with respect to the ions of some heavy, precious metals and actinides have been studied.

The spherical particles of organosilicas (average diameter 150-300 nm) with various functional (fluorine, nitrogen and sulfur-containing) groups in the surface layer were obtained by reaction of hydrolytic condensation of Si(OC2H5)4 with the corresponding functional alkoxysilanes in the ammonia medium. Using this approach, bifunctional modifying layers containing the groups ≡Si(CH2)3NH2 / ≡SiCH3 and ≡Si(CH2)3NH2 / ≡SiC3H7-n were deposited on the surface of the magnetic Fe3O4 particles.

The main factors influencing the value of the linkage of urease and cholinesterase and saving of their activities in the polysiloxane matrices, on the surface of the mesoporous silica and functionalized magnetite were established. Preparations with a high (50–90%) level linkage of the enzyme and the preservation of its activity (50–70%) have been obtained.

The reactions of polycondensation of three and tetraalkoxysilanes were applied for the formation of sorption-active organosiloxane layers on the surface of a flat ceramic membrane on the basis of Al2O3.

 

Department staff

Tertykh Valentyn A., DSc, Chief Scientist,

tel.:+38 (044) 4229673; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; This email address is being protected from spambots. You need JavaScript enabled to view it.

Budnyak Tetyana M., PhD, Researcher Associate,

tel.:+38 (044) 4249468, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Dudarko Oksana A., PhD, Senior Researcher,

tel.:+38 (044) 4229630; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Korobeinyk Alina V., PhD in Chemistry of Brighton University (Great Britain),

Research Associate, tel.:+38 (044) 4249468; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Kozakevych Roman B., PhD, Research Associate,

tel.:+38 (044) 4249468; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Kuzema Pavlo O., PhD, Senior Researcher,

tel.:+38 (044) 4249468; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Melnyk Inna V. , PhD, Senior Researcher,

tel.:+38 (044) 4229609; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;

Polishchuk Lilia M., PhD, Junior Researcher,

tel.:+38 (044) 4249468; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Sevostyanov Stanislav V., leading engineer,

tel.:+38 (044) 4249468; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Stolyarchuk Natalia V., Junior Researcher,

tel.:+38 (044) 4229630; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Tomina Veronika V., Junior Researcher,

tel:+38 (044) 4229609, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.  

 

 

Recent publications

1. P. Kuzema, Y. Bolbukh, A. Lipke, M. Majdan, V. Tertykh, Luminescent sol-gel glasses from silicate-citrate-(thio)ureate precursors // Colloids and Interfaces. – 2019. - V.3, N1. - 11.

2. M. Blachnio, T. Budnyak, A. Derylo-Marczewska, A. Marczewski, V. Tertykh, Chitosan-silica hybrid composites for removal of sulfonated azo dyes from aqueous solutions // Langmuir. – 2018. - V.34, N 6. - P.2258-2273.

3. R. Kozakevych, A. Korobeinyk, Yu. Bolbukh, V. Tertykh, M. Zienkiewicz-Strzałka, A. Deryło Marczewska, L. Mikhalovska, Preparation and characterization of nanocomposite polyvinyl chloride films with NO-generating activity // Applied Nanosci. - 2018 https://doi.org/10.1007/s13204-018-0693-0

4. T. Budnyak, A. Gładysz-Płaska, A. Strizhak, D. Sternik, I. Komarov, M. Majdan, V. Tertykh, Imidazole-2yl-phosphonic acid derivative grafted onto mesoporous silica surface as a novel highly effective sorbent for uranium(VI) ions extraction // ACS Appl. Mater. Interfaces. – 2018. - V. 10, N 7. – P.6681–6693.

5. A. Vasin, D. Kysil, L. Lajaunie, G. Rudko, V.S. Lysenko, S. Sevostyanov, V. Tertykh, Yu. Piryatinski, M. Cannas, L. Vaccaro, R. Arenal, A. Nazarov, Multiband light emission and nanoscale chemical analyses of carbonized fumed silica // J. Appl. Phys. – 2018. - V. 124, N10. – 105108 (p.1-12).

6. I. Protsak, I.M. Henderson, V. Tertykh, Wen Dong, Zi-Chun Le, Cleavage of organosiloxanes with dimethyl carbonate: a mild approach to graft-to-surface modification // Langmuir. – 2018, V.34, N33, P.9719-9730

7. Yu.S. Fetisova, O.A. Dudarko, M. Bauman, A. Lobnik, V.V. Sliesarenko, Adsorption of lead(II), cadmium(II) and dysprosium(III) from aqueous solutions using mesoporous silica modified with phosphonic acid groups // J. Sol-Gel Sci. Technol. – 2018. – V.88, N1. – P.66-76.

8. N.V. Stolyarchuk, H. Kolev, M. Kanuchova, R. Keller, M. Vaclavikova, I.V. Melnyk, Synthesis and sorption properties of bridged polysilsesquioxane microparticles containing 3 mercaptopropyl groups in the surface layer // Colloids Surf. A. – 2018. - V.538, P. 694-702.

9. I.V. Melnyk, R,P. Pogorilyi, Yu.L. Zub, M. Václavíková, K. Gdula, A. Dąbrowski, G.A. Seisenbaeva, V.G. Kessler, Protection of thiol groups on the surface of magnetic adsorbents and their application for wastewater treatment // Sci. Rep. – 2018. - V. 8. – Article number 8592.

10. O. Dudarko, S. Barany, Synthesis and characterization of sulfur-containing hybrid materials based on sodium silicate // RSC Advances. – 2018. - V.8, N65. – P.37441–37450.

11. D. Kołodyńska, T.M. Budnyak, Z. Hubicki, V.А. Tertykh, Sol-gel derived organic-inorganic hybrid ceramic materials for heavy metal removal, Chapter 9 in book: Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications, Mishra A.K. (ed.), Springer: Cham, Switzerland, 2017, P. 253–274.

12. I.S. Protsak, V.A. Tertykh, E.M. Pakhlov, A. Derylo-Marczewska, Modification of fumed silica surface with mixtures of polyorganosiloxanes and dialkyl carbonates // Prog. Org. Coat. – 2017. - V.106. - P.163–169.

13. V.V. Tomina, I.V. Melnyk, Yu.L. Zub, A. Kareiva, M. Vaclavikova, G.A. Seisenbaeva, V.G. Kessler, Tailoring bifunctional hybrid organic–inorganic nanoadsorbents by the choice of functional layer composition probed by adsorption of Cu2+ ions // Beilstein J. Nanotechnol. – 2017. - V.8, P.334–347.

14. V.V. Tomina, N.V. Stolyarchuk, I.V. Melnyk, Yu.L. Zub, T.F. Kouznetsova, V.G. Prozorovich, A.I. Ivanets, Composite sorbents based on porous ceramic substrate and hybrid amino- and mercapto-silica materials for Ni(II) and Pb(II) ions removal // Sep. Purif. Technol. – 2017. - V.175. - P.391-398.

15. S.S. Kotsyuda, V.V. Tomina, Yu.L. Zub, I.M. Furtat, A.P. Lebed, M. Vaclavikova, I.V. Melnyk, Bifunctional silica nanospheres with 3-aminopropyl and phenyl groups. Synthesis approach and prospects of their applications // Appl. Surf. Sci. – 2017. - V. 420. - P. 782–791.

16. T.M. Budnyak, A.V. Strizhak, A. Gładysz-Płaska, D. Sternik, I.V. Komarov, D. Kołodyńska, M. Majdan, V.А. Tertykh, Silica with immobilized phosphinic acid-derivative for uranium extraction // J. Hazard. Mater. – 2016. – V.314. – P. 326–340.

17. A.D. Dadashev, V.А.Tertykh, E.S. Yanovska, K.V. Yanova, New approach to synthesis of silica with chemically bound guanidine hydrochloride for preconcentration of metal ions // Am. J. Analyt. Chem. – 2016. - V.7, N5. - P. 411-420.

18. I.V. Melnyk, K. Gdula, A. Dąbrowski, Y.L. Zub. Magneto-sensitive adsorbents modified by functional nitrogen-containing groups // Nanoscale Res. Lett. – 2016. – V.11 – P.61.

19. R.P. Pogorilyi, I.V. Melnyk, Y.L. Zub, G.A. Seisenbaeva, V.G.Kessler. Enzyme immobilization on a nanoadsorbent for improved stability against heavy metal poisoning // Colloids Surf. B. – 2016. – V.144. – P.135-142.

Laboratory of Mass Spectrometry of Surface of Nanosystems

 pokr

Head of Laboratory

Pokrovskiy Valeriy A.

Doctor of Sciences

(Physics and Mathematics),

Professor

 

Telephone: + 380 44 424-94-62

Fax: + 380 44 424-35-67

Cell: 067 449 19 11

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Department staff is 9 co-workers including 1 DSc, 2 PhDs. From 1986, the Department researchers have published about 100 scientific papers; 1 doctor and 2 candidate dissertations were defended.

 

Directions of investigations

Mass spectrometric investigation of structure and properties of carbon materials, proteins, hybrid nanosystems; protein-protein and protein-ligand interactions; the studies on interdependence between structure of biologically active molecules and mechanism of ion formation and fragmentation; studies on gas-phase modification of ports and walls of carbon nanotubes in the course of mass spectrometric experiment and post–thermovacuum treatment; studies on mechanism of organic molecules fixation mechanism inside carbon nanotubes.

The main methodical direction: synthesis and chemical modification of traditional and new-synthesized nanostructured surfaces -- the supports for laser desorption/ionization which way opens new possibilities in mass spectrometry of biomolecules.

 

Main results for the recent years

By method of mass spectrometry using laser desorption/ionization, the destruction of C60 thermally deposited onvarious supports was investigated. It was found that mechanism of ion formation depended upon the nature and structure of the surface on which C60 was condensed, upon conditions of condensation, and also upon mechanisms of ion-molecular reactions in hot ion plum. It was also proved that plasmon resonance as the result of multi-photon excitation of fullerene molecules in condensed state is the first stage and the main mechanism of delivering energy for laser-induced ionization, fragmentation, aggregation and chemical reactions which occur in adsorbed state and ion plum.

Technics of temperature-programmed desorption mass spectrometry was used to investigate thermal destruction of linear polyphenylsiloxane adsorbed on the surface of oxide МхОу/SiO2, where М – Cu, Mg, Mn, Ni, Zn. It was found out that in course of thermolysis of adsorbed polymethylphenylsiloxane, different to polydimethylsiloxane, no six link cycle siloxanes were observed in experiment. It was proved that formation of toluene and diphenyl takes place in the surface layer of silica matrix as the result of thermolysis of adsorbed polymethylphenylsiloxane resulting in recombination of methyl and phenyl radicals.

The technics of laser/desprption ionization mass spectrometry was used to study interaction of proteins albumin, lisozyme, alpha-synuclein and insulin with bistrifluoromethyl cesium. The effect of metal complex on the process of protein self-association was observed and suggestion was proposed concerning specific binding of complex with various functional groups depending upon the nature and structure of protein. For high-order protein aggregates, the possibility of identification of various protein conformations was demonstrated, using characteristic lines and general structure of mass spectrum. It was also shown that fragmentation of alpha-synuclein in conditions of laser/desorption experiment take place preferentially on sites of glycine-valine binding.

 

Laboratory staff

Pokrovskiy Valeriy A., DSc, Head of Laboratory,

tel.: 380 44 424-94-62, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Gromovoy Taras Yu., PhD, Senior Researcher

tel.: +38 (044) 4249456; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Laguta Valentin N., engineer

tel.: 097 5604930; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Mischanchuk Boris M., leading engineer

tel.: +38 (044) 2393316; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Mischanchuk Aleksandr V., leading engineer

tel.: +38 (044) 2393316; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Moshkivska Nadezhda M., leading engineer

tel.: +38 (044) 4249451; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Obrazkov Aleksandr G., leading engineer

tel.: 0504438010; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Severinovska Olga V., PhD, Senior Researcher

tel.: +38 (044) 4249456; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

 

Recent publications

  1. A.M. Puziy, O.I. Poddubnaya, T.Y. Gromovoy. Laser desorption/ionization time of flight mass spectrometry of phosphorus-containing carbons // Carbon. – 2013. – V. 53. - P. 405-408.
  2. S.V. Romanova, Т.Е. Terikovskaya, B.G. Mischanchuk, S.A. Kirillov, V.A. Pokrovskiy. Investigation of decomposition of citrate precursors up to zinc oxide by temperature-programmed desorption mass spectrometry // Chemistry, Physics and Technology of Surface. – 2012. - V.3, № 2. - P. 166-172.
  3. L.О. Davidenko, B.G. Mischanchuk, А.G. Grebenyuk, V.A. Pokrovskiy, Yu.V. Plyuto. Studies on thermolysis of Cr(acac)3 on the surface of SiO2 and Al2O3 by temperature-programmed desorption mass spectrometry // Chemistry, Physics and Technology of Surface. - 2012 - V.3, №3. - P.273-282 (in Russian).
  4. A.B. Karpenko, V.S. Kuts, S.V. Snegir, V.A. Pokrovskiy. Regularities of fragmentation of C60 fullerene according to the data of laser-desorption mass spectrometry and quantum chemistry // Ukr. J. Phys. – 2012. V. 57, N 7. – P. 767–672.
  5. V.O. Gabovych, V.A. Pokrovskiy, Ye.V. Demyanenko, A.G. Grebenyuk. Experimental and theoretical study of laser desorption/ionization of methylene blue from the surface of thermally exfoliated graphite // Ukr. J. Phys. – 2012. -V. 57, N 7. – P. 775 -782.
  6. O.B. Karpenko, V.V. Trachevskij, O.V. Filonenko, V.V. Lobanov, M.V. Avdeev, T.V. Tropin, O.A.Kyzyma, S.V. Snegir. NMR study of non-equilibrium state of fullerene C60 in n-methyl-2-pyrrolidone // Ukr. J. Phys. – 2012. – V. 2. – P. 860–863.
  7. F.F. Contreras-Torres, E.V. Basiuk, V.A. Basiuk, V. Meza-Laguna, T.Yu. Gromovoy. Nanostructured diamine–fullerene derivatives: computational density functional theory study and experimental evidence for their formation via gas-phase functionalization // J. Phys. Chem. A, - 2012, -V 116, № 6, P. 1663–1676.
  8. V.O. Pokrovskiy. Desorption mass spectrometry: physics, physical chemistry, surface chemistry // Visnyk NANU.- 2012.- №12. - P. 28-43 (in Russian).
  9. І.І. Romanovska, О.V. Ossychuk, S.S. Dekina, Yu.A. Shesterenko, O.V. Sevastyanov, Т.Yu. Gromovoy. Phenol oxidation of covalently immobilized horseradish peroxidize // Biotekhnologia. – 2011. - V. 4, № 6. – p. 31-35. (In Ukrainian)
  10. М. Аndrusshina, І. О. Golub, D.D. Didikin, S.E. Litvin, T.Yu. Gromovoy, V.F. Gorchev, V.O. Movchan. Structure, properties and toxicity of nanoparticles of silver and cuprum oxides // Biotekhnologia. – 2011. - V. 4, № 6. – P. 51-60.(in Russian).

 

 

Laboratory of Oxide Nanocomposites

 bori

 

Head of Laboratory

Borysenko Mykola V.

PhD in Chemistry, Senior Researcher

 

Telephone: + 380 44 422-96-72

Fax: +380 44 424-35-67

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Laboratory staff is 7 co-workers including 6 PhDs. From 1986, the Laboratory researchers have published more than 200 scientific papers, obtained 15 patents for inventions, and 8 candidate dissertations were defended.

 

Directions of investigations

Chemical reactions of disperse silica with chlorides, oxochlorides, and acetylacetonates of transition and rear-earth metals; synthesis of oxide nanoparticles and layers of Zr, Ti, Cr, Ni, Co, Fe, Cu, Ce, Eu and other metals on surfaces of silica matrices; phase and dimensional transformations of a deposited metal oxide phase on silica surface during the course of processes of synthesis, hydrolysis, and calcination; sol-gel method for producing doped silica glass and nanocomposites; spectral properties of glass and glass-ceramic systems doped with transition and rear-earth metals.

 

Main results for the recent years

Nanodimensional clusters (from 5 to 50 nm) of chromium oxide on silica surface have been synthesised and a novel variant of the sol-gel method for synthesising silica glass and glass ceramics (vitroceramics) has been designed. The sol-gel glass that is produced using chromia-modified aerosils is distinguished for a high optical homogeneity and increased refractive index in comparison to ordinary silica glasses.

By techniques of IR spectroscopy and X-diffraction analysis a study has been made of chemisorption of zirconium tetrachloride on fumed silica from a gas phase. Zirconium tetrachloride reacts with ºSiOH groups on the silica surface by the mechanism of the electrophilic substitution of proton, which results in formation of grafted –ZrCl3 groups. At the temperature of sublimation of ZrCl4 the degree of transformation amounts to 90%. Bonds SiO-Zr are hydrolytically stable and undergo destruction in water vapors at a temperature above 400 °C. Stage-by-stage modification (chemisorption of ZrCl4, hydrolysis, dehydration) leads to formation of ZrO2 phase. The zirconia formed on the surface has tetragonal modification. The ZrO2 crystallite size increases in proportion to number of deposited layers (1-4) from 46 to 109 in the direction of {101} face, with the concentration of zirconia increasing from 2.0 to 6.8 wt %. Application of pyridine gives evidence for the presence of Brönsted and Lewis acid sites.

By techniques of IR spectroscopy, thermal gravimetry, and mass-spectrometry a research has been carried out into influence of oxides of titanium and vanadium used for modification of the fumed silica surface on the process of chemisorption of hexamethyldisilazan. It has been shown that a deposited metal oxide phase exerts a slight effect on activation energy of the reaction between hexamethyldisilazan and silanol groups of silica. However, the phase makes a substantial influence on thermal destruction of grafted trimethylsilyl groups. Oxides of vanadium and titanium have been shown to increase thermal stability of grafted groups in an oxidising atmosphere and to decrease substantially this stability in vacuum.

Further, it has been shown that polydimethylsiloxane (PDMS) (5-40 wt %) adsorbed on surface of silicas modified with oxides of metals (Al, Sn, Zn, Cr, V) imparts high hydrophobic properties to them in the temperature interval 100-420 °C. The presence of titania on silica surface enhances the thermal stability of a hydrophobic coating (with a PDMS content of 20-40 wt %) at temperatures up to 520 °C.

We have also managed to synthesise catalysts with isolated vanadia groups and nanoclusters of vanadia on fumed silica surface. The catalysts are distinguished for their high catalytic activity and hundred-per-cent selectivity with respect to formaldehyde during the course of conversion of methane.

 

Laboratory staff

Borysenko Mykola V., PhD, Head of Laboratory,

tel.: +38 (044) 4229672; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Bogatyrov Viktor M., PhD, Senior Researcher,

tel.: +38 (044) 4229672; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Galaburda Mariya V., PhD, Research Associate,

tel.: +38 (044) 4229672; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Gornikov Yuri I., leading engineer,

tel.: +38 (044) 4249470; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Oranska Olena I., PhD, Senior Researcher,

tel.: +38 (044) 4249470; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Sulym Iryna Ya., PD, Senior Researcher,

tel.: +38 (044) 4229672; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Cherniavska Tetiana V., PhD, Research Associate,

tel.: +38 (044) 4249455; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Recent publications

1. V.M. Gun’ko, I.Y. Sulym, M.V. Borysenko, V.V. Turov. Interfacial behavior of water bound to zirconia/nanosilica with adsorbed poly(dimethylsiloxane) // Colloids Surf. A: Physicochem. Eng. Aspects. – 2013. – V. 426. – P. 47–54.

2. L.I. Borysenko, H.H. Mnischenko, M.V. Borysenko, M.T. Kartel’, L.V. Zheleznyi, Y.A. Liubinin. Non-fluid oil // Patent of Ukraine. – № 99227. – 25.07.2012 (in Ukrainian).

3. I.Y. Sulym, M.V. Borysenko, O.V. Goncharuk, K. Terpilowski, D. Sternik, E. Chibowski, V.M. Gun’ko. Structural and hydrophobic–hydrophilic properties of nanosilica/zirconia alone and with adsorbed PDMS // Appl. Surf. Sci. – 2011. – V. 258, N1. – P. 270–277.

4. M.V. Borysenko, G.R. Webster, S. Tyebjee, T.V. Cherniavska, A.G. Dyachenko, Yu. Gnatiuk, P. Kamarchik, L. Maksimovic, Yi.J. Warburton, S.M. Mohnot. Multi-phase particulates, method of making, and composition containing same // US Patent Application. – US2010/0261029 A1. – Pub. Date: 14.10.2010.

5. L.I. Borysenko, G.G. Mnischenko, K.S. Kulyk, L.V. Petrus, I.Yа. Sulim, M.V. Borysenko. Silica, titania, zirconia and ceria nanocomposites – greases thickener // Chem. Phys. Technol. Surf. – 2010. – V. 1, N 1, – P. 111–116 (in Russian).

6. I.Y. Sulim, M.V. Borysenko, O.M. Korduban, V.M. Gun’ko. Influence of silica matrix morphology on characteristics of grafted nanozirconia // Appl. Surf. Sci. – 2009. – V. 255, N 17. – P.7818–7824.

7. V.M. Gun’ko, M.V. Borysenko, P. Pissis, A. Spanoudaki, N. Shinyashiki, I.Y. Sulym, T.V. Kulik, B.B. Palyanytsya. Polydimethylsiloxane at the interfaces of fumed silica and zirconia/fumed silica// Appl. Surf. Sci. – 2007. – V. 253. – P. 7143–7156.

8. M.V. Borysenko, M.V. Ignatovich, P. Baranui, T. Vidoczy, V. M. Bogatyrov, E.N. Poddenezhny, O.A. Stotskaya. Cu and Cr oxide nanoparticles in silica glass: preparation and spectral study // Nanosystems, Nanomaterials, Nanotechnologies. – 2006. – V. 4, N 1. – P. 137–143.

 

 

Laboratory of Photonics Oxide Nanosystems

 smirn

 

 

Head of Laboratory

Smirnova Nataliia P.

PhD in Chemistry, Senior Researcher

Telephone: + 380 44 422-96-98

Fax: + 380 44 424-35-67

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;

 

Laboratory staff is 9 co-workers including 1 DSc, 8 PhDs, 1 doctoral candidate and 1 posgraduate student. From 1986, the Laboratory staff have published 5 chapters in collective books, 250 scientific papers, and obtained 5 patents for inventions; 1 DSc and 15 PhD theses were defended.

 

Directions of investigations

Investigationof UV light interaction with the surface of adsorbents, a transfer of electron, proton or exciting energy between adsorbed organic compounds and the active sites of solids - silica, titania and binar oxide systems, synthesis and properties of nanosized metal particles.

Synthesis and physical-chemical properties studies of mixed oxides and layered double hydroxides; creation of photocatalysts on their base.

Synthesis and studies on the structure, surface chemistry, photoelectrochemical and photocatalytical properties of mesoporous films based on oxides of IV group elements and mixed oxide systems.

Mechanisms of photoinduced processes of electron, proton and energy transfer in semiconductor composites under conditions of redox transformations of organic and inorganic compounds.

Technology development of new nanosized broad-spectrum bactericide materials and conjugated nanobiotechnologycal antitumoral hypotoxical preparations based on silver, gold, copper nanoparticles in the colloids and suspensions of dispersed silica.

Researches of photocatalytic elimination of nitrogen-contained organic pollutants form aqueous solutions (cancerogenic polyacenes, dyes, antibiotics) and gas phase (alcohols, ketones); photoreduction of inorganic toxic ions (Cr(VI), Hg(II), Cu(II)).

Systematic spectral researches into the state of incorporated transition and rare-earth ions in inorganic matrices (quartz and borates) by the steady-state, kinetic photo- and radioluminescence, optical absorption, and ESR techniques.

Potential applications: coatings (photocatalysts, electrochemical sensors, self-cleaning windows, tables, walls etc, defogging mirrors, antireflective and ornamental coatings); optics (information recording devices, matrices for MALDI, substrates for IR-, Raman and Fluorescence spectroscopy, biosensors); healthcare(bactericides, system for diagnostics, antimicrobial, conjugated nanobiotechnologycal antitumoral hypotoxical preparations based on silver, gold, copper nanoparticles).

 

Main results for the recent years

Approach involving a simultaneous reduction of silver nitrate and tetrachlorauratic acid using tryptophan (Trp) as a reducing/stabilizing agent was applied during NP synthesis. The obtained Ag/Au/Trp NPs (5-15 nm sized) were able to form stable aggregates with an average size of 370-450 nm and were potentially less toxic than Ag/Au/SDS in relation to a mouse model system based on clinical biochemical parameters and oxidative damage product estimation. Ag/Au/Trp NPs were shown to exhibit anticancer activity in relation to a Lewis lung carcinoma model.

Colloidal solution of Ag nanoparticles, heterogeneous Ag/SiO2 system and bimetallic Ag/Au nanoparticles produced photochemically in colloidal solutions and within porous silica films and powders in the form of alloy and core/shell showed a high antimicrobial activity against a number of pathogenic microorganisms. 

The highly dispersed Zn-Al mixed oxides have been synthesized by citrate method and by thermal decomposition of Zn-Al layered double hydroxides (LDH) prepared by coprecipitation method. The possibility of its reconstruction in LDH in aqueous suspensions has been studied. There was established that the hydration of oxide systems synthesized by citrate method had caused partial conversion of mixed oxides to the crystalline phase of LDH. In the case of oxides obtained by thermal treatment of Zn-Al LDH, the almost complete regeneration of LDH structure has achieved. The effect of ultrasonic treatment, stirring time and the presence of magnesium oxide in oxide systems on hydration process of Zn-Al mixed oxides has been studied. The crystal structure, morphology, textural properties and ability to absorb light in the ultraviolet range of the mixed oxides and products of their hydration have been studied.

Low-temperature sol-gel methods of synthesis of porous nanosized transparent stable films on the basis of titania and its binary compositions with oxides of silicon, iron, and zirconium have been developed. The methods involve simultaneous hydrolysis of corresponding alkoxides in the presence of template agents (CTAB and triblock copolymer P123).The structure and optical properties of these films were characterized using SEM, AFM, low-angle XRD and UV/Vis spectroscopy, hexane adsorption investigation.

Zr or Si oxides doping on the stage of sol-gel process improves thermal stability, retards sintering of the films and stabilizes the nanocrystalline structure with developed porosity. Catalytic activity of mesoporous TiO2 and TiO2/ZrO2 (5-50% of ZrO2) films in the processes of gaseous ethanol photooxidation growth with increasing of specific surface area and surface acidity of the samples. Enhancing of photocatalytic activity of zirkonia-doped films relatively to pure TiO2 originates from an anodic shift of the valence band edge potential (estimated by direct photoelectrochemical measurements).

Possibility of encapsulation of gold (Au), silver (Ag) and copper (Cu) nanoparticles by amino acid – tryptophane (Trp) in solutions and on the silica surface was proven. Tryptophane executes a double function - effective reducing agent of gold ions and stabilizer of Au nanoparticles. The significant increase in the intensity of the carbonil and amino groups as well as the benzene and pyrrole ring vibrations in the Raman spectra of Trp in the presence of Au NP was observed due to donor-acceptor complex formation.

Study of X-ray luminophors - single crystal and glassy lithium tetraborate (LTB) doped with transition and RE ions: Cu, Ag. Mn, Eu Ce using sets of methods: optical absorption; steady- state and time-resolved photoluminescence (PhL); radioluminescence (RL), termoluminescence (TL) including spectrally-resolved 3-dimentional (TL). Valence and coordination states and hence the luminescence properties of all doped species are determined by morphological structures of solid LTB lattice. A comparative characterization of undoped lithium tetraborate (LTB) and Cu-doped (LTB:Cu) single crystals (tissue-equivalent luminophors) to commercially produced TLD-100 and TLD-700 dosimeters was studied. The results show that LTB:Cu is approximately 50 times more sensitive to gamma-radiation than LTB and 5 times as compared to TLD-100 and TLD-700. At the same time LTB is 5 times more sensitive to thermal neutrons, which suggests the application of paired LTB and LTB:Cu for mixed gamma-neutron field dosimetry.

 

Laboratory staff

Smirnova Nataliia P.PhD, Head of Laboratory,

tel.:+38 (044) 4249465; e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

Chorna Nataliia O., Junior Researcher,

tel.:+38 (044) 4229698; e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

Eremenko Anna M.DSc, Leading Researcher,

tel.:+38 (044) 4229698; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Linnik Оksana P., PhD, Senior Researcher,

tel.:+38 (044) 4229698; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Mukha Iuliia P., PhD, Senior Researcher,

tel.:+38 (044) 4229698; e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

Petrik Irina S., PhD, Senior Researcher,

tel.:+38 (044) 4229698; e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

Starukh Galyna N., PhD, Senior Researcher,

tel.:+38 (044) 4229698; e-mail  This email address is being protected from spambots. You need JavaScript enabled to view it.

Vityuk Nadiia V., PhD, Research Associate,

tel.:+38 (044) 4229698; e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

Yashan Galyna R., PhD, Junior Researcher,

tel.:+38 (044) 4229698; e-mail: jashan This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Doctoral candidates

Mukha Iuliia P., PhD, tel.:+38 (044) 4229698; e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Postgraduate students

Porubleva Victoriia V., тел.: +38(044) 4229698; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Recent publications

1. I.O. Shmarakov, Iu.P. Mukha, V.V. Karavan, O.Yu. Chunikhin, M.M. Marchenko, N.P. Smirnova, A.M. Eremenko. Tryptophan assisted synthesis reduces bimetallic gold/silver nanoparticle cytotoxicity and improves biological activity // Nanobiomedicine – 2014. – V. 1. – P. 01 – 10.

2. N. Ostapenko, Yu. Ostapenko, O. Kerita, D. Peckus, V. Gulbinas, A. Eremenko, N. Smirnova, N. Surovtseva Luminescence features of nanocomposites of silicon-organic polymer/porous SiO2 and TiO2 films // Synthetic Metals – 2014. - V. 187. - P. 86 – 90.

3. G. M. Starukh, O. I. Oranska, S.I. Levytska. Reconstruction of ZnO-contained mixed oxides in layered double hydroxides // Ukr. Chem. J – 2014. – V. 80, N 9. – P. 32–40.

4. A. Naumenko, Iu. Gnatiuk, N. Smirnova, A. Eremenko. Characterization of sol–gel derived TiO2/ZrO2 films and powders by Raman spectroscopy// Thin Solid Films. – 2012 – V. 520, N 14. –- P.4541–4546.

5. O. Linnik, I. Petrik, N. Smirnova, V. Kandyba, O. Korduban, A. Eremenko, G. Socol, N. Stefan, C. Ristoscu, I.N. Mihailescu, C. Sutan, V. Malinovski, V. Djokic, D.Janakovic. TiO2/ZrO2 thin films synthesized by PLD in low pressure N-, C- and/or O-containin ggases: structural, optical and photocatalytic properties // Digest Journal of Nanomaterials and Biostructures. – 2012. – V. 7, N 3. – Р.1343–1352.

6. N.V. Gaponenko, V.S. Kortov, N. P. Smirnova, T.I. Orekhovskaya, I.A. Nikolaenko, V.A. Pustovarov, S.V. Zvonarev, A.I. Slesarev, O.P. Linnik, M.A. Zhukovskii, V.E. Borisenko. Sol-gel derived structures for optical design and photocatalytic application // Microelectronic Engineering. – 2012. –V. 90. – Р.131–137. doi:10.1016 90.

7. A.M. Eremenko, N.P. Smirnova, I.P. Mukha, A.P. Naumenko, N.M. Belyi, S. Hayde. Effect of gold nanoparticles on an aerosil surface on the fluorescence and Raman spectra of adsorbed tryptophan // Theoretical and Experimental Chemistry. – 2012. –V. 48, N 1. – Р.49–55.

8. H.I. Korchak, О.V. Surmasheva, А.І. Міkhienkova, A.M Eremenko, Yu.P. Мukha, N.P. Smirnova. Method of synthesis of nanosized silver solutions // Patent of Ukraine № 67484 from  27.02.2012.

9. H.I. Korchak, О.V. Surmasheva, А.І. Міkhienkova, A.M Eremenko., Yu.P. Мukha, N.P. Smirnova. Antimicrobial composition // Patent of Ukraine № 67536 from 27.02.2012.

10. A. Eremenko, N. Smirnova, Iu. Gnatiuk, O. Linnik, N. Vityuk, Yu. Mukha, A. Korduban. Silver and gold nanoparticles on sol-gel TiO2, ZrO2, SiO2 // Surfaces: Optical Spectra, Photocatalytic Activity, Bactericide Properties / Chapter in Book 3: Composite Materials. – 2011. – P.2–32.

11. Yu. Gnatyuk, N. Smirnova, O. Korduban, A. Eremenko. Effect of zirconium in corporation on the stabilization of TiO2 mesoporous structure. // Sur. Interface Anal. – 2010. – V. 42. – P.1276–1280.

12. Yu. Mukha, А. Eremenko, G. Korchak, А. Michienkova. Physicochemical properties and antibacterial action of stabilized silver and gold nanostructures on the surface of disperse silica // Journal of Water Resources and Purification.– 2010. – V. 2. – P.131– 136.

13. G.V. Krylova, Yu.I. Gnatyuk, N.P. Smirnova, A.M. Eremenko, V.M. Gunko. Ag nanoparticles deposited onto silica, titania and zirconia mesoporous films synthesized by sol-gel template method // J. Sol-Gel Sci. Technol. – 2009. – V 50. – P.216–228.

 

 

 

Department of Chemical Design of Surface

 


Head of Department

Belyakova Lyudmila A.
Doctor of Sciences (Chemistry),

Professor

 

Telephone: + 38 (044) 424 94 57, 
     +38(044) 422 96 12

Fax: + 38 (044) 424 35 67

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Department staff is 12 co-workers including 2 DScs, 5 PhDs. The Department includes Laboratory of  Nanochemistry of Functional Coatings (Head of Lab PhD Yu.V. Plyuto). From 1986, the Department researchers have published 1 book, 8 Chapters in 6 collective monographs, 265 scientific papers, and obtained 25 patents for invention; 2 doctor and 8 candidate dissertations were defended.

 

Directions of investigations

Study of the various sorption processes involving surface of highly disperse hydroxylated and modified silicas. Construction of sorption centers of ions and molecules in the surface layer of disperse silica for specific and selective functional materials.

 

Main results for the recent years

New chemical approaches for synthesis of various functional organosilicas have been proposed. There are: 1) activation of aminopropylsilica surface with high reactive halogen-containing organic compounds; 2) direct formation of bonds Si–C on the silica surface via hydrosilylation, high-temperature condensation or reduction reactions as well as reagents addition to siloxane bonds; 3) increase in the surface concentration of functional groups by bringing in chemical reactions not only silanol, and siloxane groups of silica; 4) use of new soft silylating reagents for effective endkepping of organosilicas; 5) design of adsorption and catalytic sites in the surface layer of silica by direct chemical assembly or matrix prints with sorption “memory”.

Chemical assembly of various tetraalkylhalogen groups in the surface layer of silica using quaternization, hydrosilylation or copolymerization reactions have been performed to obtain effective sorbents-sequestrants. It was found that adsorption of bile acids is not only on the mechanism of anion exchange, but also by the dispersion interactions between the hydrophobic parts of functional silica surface and bile acids molecules.

The methods for chemical immobilization of β-cyclodextrin and its derivatives on the surface of highly disperse silicas have been proposed. It was studied the interaction of cyclic oligosaccharides with benzene carboxylic acids in a solution and on the surface of β-cyclodextrin-containing silicas. It was proved the formation of supramolecular structures with a component ratio of 1:1. Conditions have been found for encapsulation of benzene carboxylic acids into β-cyclodextrin molecules and its separation in solid form. It was demonstrated the transition of benzene carboxylic acids into nano state with “dispersion” at the molecular level, the loss of individual crystalline structure and the increase of thermal stability.

The influence of the chemical nature of functional groups of attached β-cyclodextrin on sorption capacity of nanoporous organosilicas to ions of mercury, cadmium, zinc, lead, copper, chromium and arsenic has been studied. It was found that increase of adsorption of toxic metals nitrates by 2–3 orders is the result of super molecules formation on the surface of β-cyclodextrin-containing silicas. Their composition depends on the polarizability of cations and functional substituents of β-cyclodextrins.

Mesoporous silicas with an ordered hexagonal structure of cylindrical pores have been synthesized by sol-gel template method. A new approach for selective chemical modification of the outer surface of mesoporous silica nanoparticles with functional organic groups has been proposed. This method has been used in the design of pH-sensitive molecular nanovalves. It has been proved that the chemical decoration of entrances to the MCM-41 silica pores with amino-containing organic groups provides the controlled release of encapsulated biologically active substances when changing the pH of the aqueous medium.

The quantitative characteristics of vitamins, amino acids, biogenic amines, bilirubin, bile acids, antibiotics, and acridine derivatives adsorption on the surface of disperse amorphous silica have been determined. It was found that depending on the nature of organic molecules different types of interactions with silanol groups of the silica surface are observed. It is shown that the complex formation of some of studied molecules with metal ions significantly effects on adsorption processes.

It was found that the modification of silica surface with macrocyclic polyether dibenzo-18-crown-6 promotes adsorption of amino-containing biomolecules. The extraction degree of these compounds from the solution depends on the possibility of implementing of electrostatic and stacking interactions, and also hydrogen bonding between the functional groups of the sorbent and sorbate.

The proposed synthesis methods of activated carriers for immobilization of organic compounds and functional silica materials, sorbents for the concentration of radionuclides, heavy metal ions, silver, platinum and palladium, and chromatographic carriers for the separation of racemic mixtures of organic compounds, heterogeneous metal complex catalysts for the oxidation of aromatic compounds and methane under mild conditions, high hydrophobic silicas for special adsorption tasks, protective chemical coatings for oxides and non-alloy steels are patented in USSR, Ukraine, USA, South Africa, Europe and China.

 

Department staff

Belyakova Lyudmila A., DSc, Head of Department,

tel.: +38 (044) 4249457, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Dziazko Maryna O., leading engineer,

tel.: +38 (044) 4229691, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Lyashenko Diana Yu., PhD, Senior Researcher,

tel.: +38 (044) 4229611, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Markitan Olga V., PhD, Research Associate,

tel.: +38 (044) 4229668, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Vlasova Nataliya N., DSc, Leading Researcher,

tel.: +38 (044) 4229668, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Roik Nadiia V., PhD, Senior Researcher,

tel.: +38 (044) 4229691, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Shvets Oleksandra M., Junior Researcher,

tel.: +38 (044) 4229691, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Trofymchuk Iryna M., leading engineer,

tel.: +38 (044) 4229691, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Recent publications

1. N.V. Roik, L.A. Belyakova.  Mesoporous silica nanoparticles equipped with surface nanovalves for pH-controlled liberation of doxorubicin // Interface Focus, 2016. http://dx.doi.org/10.1098/rsfs.2016.0041

2. N.V. Roik, L.A. Belyakova. pH-Sensitive supramolecular assemblies of β-cyclodextrin and 2-aminodiphenylamine in water medium: structure, solubility and stability // J. Sol. Chem. – 2016. – V. 45, N 5. – P. 818–830.

3. I.M.Trofymchuk, N.V. Roik, L.A. Belyakova. Sol-gel synthesis of ordered β-cyclodextrin-containing silicas // Nanoscale Res. Let. – 2016. – V. 11, N 1. – P. 174–185.

4. N.V. Roik, L.A. Belyakova, M.O. Dziazko.  Adsorption of antitumor antibiotic doxorubicin on MCM-41-type silica surface // Adsorption Science and Technology, 2016.  DOI:10.1177/0263617416669504

5. Н.Н. Власова.  Адсорбция аминокислот на поверхности диоксида церия // Коллоидный журнал. – 2016. – Т.78, № 6. – С.700–706.

6. O. Shvets, L. Belyakova. Synthesis, characterization and sorption properties of silica modified with some derivatives of β-cyclodextrin // J. Hazardous Materials. – 2015. – V.283. – P.643–656.

7. N.V. Roik, L.A. Belyakova. Chemical design of outer surface of mesoporous silicas for controlled storage and release of aromatic amino acid // J. Solid State Chemistry. – 2014. – V.215. – P.284–291.

8. Н.Н. Власова, Л.П. Головкова, О.В. Маркитан, Н.Г. Стукалина. Тройные поверхностные комплексы в системах кремнезем – ионы никеля (2+) – 2,2 – дипиридил // Коллоидн. журнал. – 2014. – Т.76, № 3. – С. 311–318.

9. Л.А. Белякова, Д.Ю. Ляшенко, А.Н. Швец. Сорбция кадмия (II) из многокомпонентных нитратных растворов с помощью функциональных органокремнеземов // Химия и технология воды. – 2014. – Т.36, №2. – С.105–115.

10. Л.А. Белякова, Д.Ю. Ляшенко. Нанопористые функциональные органокремнеземы для сорбции токсичных ионов // Журн. физ. химии. – 2014. – Т.88, №3. – С.480–484.

11. N.V. Roik, L.A. Belyakova. Sol-gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface // J. Solid State Chemistry. – 2013. – V.207. – P.194–202.

12. L.A. Belyakova, D.Yu. Lyashenko, O.M. Shvets. Functional β-cyclodextrins as the active centres on the silica surface for toxic ions sorption // Укр. хим. журнал. – 2013. – Т.79, №11. – С.50–62.

13. Л.А. Белякова, Д.Ю. Ляшенко. Сорбция цинка (II) нанопористыми β‑циклодекстринсодержащими органокремнеземами // Химия, физика и технология поверхности. – 2012. – T.3, №3. – C.227–236.

14. N.V. Roik, L.A. Belyakova. Thermodynamic, IR spectral and X-ray diffraction studies of “β-cyclodextrin – para-aminobenzoic acid” inclusion complex // J. Incl. Phenom. Macrocyclic Chem. – 2011. – V.69, N3–4. – P.315–319.

15. I.M. Trofymchuk, L.A. Belyakova, A.G. Grebenyuk. Study of complex formation between β-cyclodextrin and benzene // J. Incl. Phenom. Macrocyclic Chem. – 2011. – V.69, N3–4. – P.371–375.

 

 

 

 

Department of Surface Chemistry of Hybrid Materials

 

 

Head of Department


 

Telephone: + 380 44 422-96-09

Fax: + 380 44 424-35-67

E-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Department staff is 16 co-workers including 1 DSc, 9 PhDs, and 1 PhD student.  The Department includes Laboratory of Chemisorption  (Head of Lab DSc V. A. Tertykh). From 1986, the Department researchers published 1 book, several chapters in 4 collective monographs, 170 scientific articles; 1 doctor and 4 candidate dissertations were defended

 

Directions of investigations

The main direction of the department’s research is the development of scientific principles of directed synthesis of hybrid organic-inorganic materials using sol-gel and template methods and multicomponent systems. Such hybrid materials are of significant practical interest for sorption technologies (selective removal of toxic and precious metal ions, rare earth and radioactive elements; selective absorption of organic molecules from vapour and gasses, etc.), eco-analytical chemistry (quality control of food, drinking water, etc.), chromatography (of proteins, etc.), chemo- and biosensors (medical diagnostics), catalysis (eg, creating selective catalysts with super acidic centres), biotechnology (enzymatic catalysts).

 

Main results for the recent years

On the basis of the sol-gel and template methods there were developed one-stage techniques for the synthesis of mesoporous silica with complexing and ion-exchange groups (amine, mercapto, ammonium, phosphonic, and thiourea) in the surface layer. Methods of AFM and electron microscopy were applied to study the morphology of the obtained hybrid organic-inorganic materials. Vibrational and solid-state NMR spectroscopy were used to analyze the composition, structure of structural units and the behavior of the surface layer. There were studied the absorption properties of the synthesized materials towards some heavy ions, noble metals and actinides. It was shown that such sorbents are easy to regenerate without significant changes in their structure and the surface layer.

Hydrolytic copolycondensation reaction of tetraethoxysilane with relevant trifunctional silanes in ammonia medium (modified Stöber method) was used to produce spherical silica particles (average diameter 140-270 nm) with different functional and complexing groups in the surface layers: hydrophobic fluorine-containing groups, amino and sulfur-containing groups. It was shown that the course of of hydrolytic polycondensation reaction with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (formation of gel or particles) depends on the concentration of ammonia in the initial solution. It was determined than in the case of amino groups, the particle size depends on the geometry and basicity of functional groups, the order of reacting components introduction and the mixing time of the suspension. It was shown that the silica spheres with fluorine-containing groups absorb benzene, spheres with amino groups adsorb nickel (II) and copper (II) ions of from aqueous solutions, and with thiol groups - silver (I) ions.

The developed method of hydrolytic polycondensation of tetraethoxysilane with corresponding trifunctional silanes was used for coating of the surfaces of Fe3O4magnetic particles with bifunctional layers of ≡Si(CH2)3NH2/≡SiCH3 and ≡Si(CH2)3NH2/≡SiC3H7-n. The formation of polysiloxane bonds and the presence of functional groups (1.6-2.2 mmol/g) in the surface layers of magnetite nanoparticles were confirmed by IR spectroscopy and acid-base titration. The presence of methyl (or n-propyl) groups along with amine groups in the surface layer enhances the sorption capacity on samples to human serum albumin. The obtained powders retain their magnetic properties and are promising for application in medical practice.

There were determined the basic factors affecting the amount of urease and cholinesterase binding; residual activity of these enzymes during immobilization in polysiloxane matrices, on the surface of mesoporous silica and magnetite with functional groups. There was suggested a technique of one-stage immobilization of urease on non-porous surfaces using hydrolytic polycondensation reaction of alkoxysilanes that involves the introduction of native enzyme in the original reaction solution of alkoxysilanes. During the further course of hydrolytic polycondensation the enzyme is included in polyorganosiloxane matrix. Immobilization of urease occurs with high levels of enzyme binding (50-90%), and its residual activity is about 50-70%.

The hydrolytic polycondensation reaction of tri- and tetrafunctional silanes was used to form the active layers on the surfaces of flat ceramic membranes (based on Al2O3). The method involves obtaining fine sol by acid hydrolysis of tetraethoxysilane and 3-mercaptopropylrtimethoxysilane. It was determined that at the ratio of reacting components "tetraethoxysilane/3-mercaptopropyl-rtimethoxysilane" in the functionalizing sol equaled to 1:1 (mol) there was observed the formation of 70 nm nanoparticles on the surfaces of flat ceramic membranes. IR spectroscopy confirmed the presence of polysiloxane network and complexing mercapto groups. Such membranes were also functionalized with polysiloxane and polysilsesquioxane layers containing 3-aminopropyl groups. SEM images indicate the formation of polysiloxane or polysilsesquioxane layers on the membranes surface with thickness of 0.35 μm and 4.4 μm, respectively. Infrared spectroscopy data confirmed the presence of the polysiloxane network and functional groups introduced during synthesis. Measurements of the contact angles on the membranes surfaces showed that the hydrophilicity of the active layer is practically independent of the type of the structuring agent (tetraethoxysilane or 1,2-bis(triethoxysilyl)ethane), and the introduction of the methyl groups increasing the hydrophobicity of the surface layer.

 

Department staff

Dudarko Oksana A., PhD, Research Associate,

tel.:+38 (044) 4229630; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Melnyk Inna V., PhD, Senior Researcher,

tel.:+38 (044) 4229609; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; This email address is being protected from spambots. You need JavaScript enabled to view it.

Nazarchuk Galyna I., Junior Researcher,

tel.:+38 (044) 4229630; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Sliesarenko Valeria V., leading engineer,

tel:+38 (044) 4229630, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Stolyarchuk Natalia V., Junior Researcher,

tel.:+38 (044) 4229630; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Tomina Veronika V., leading engineer,

tel:+38 (044) 4229609, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. This email address is being protected from spambots. You need JavaScript enabled to view it.  

 

Postgraduate student

Boyko Yulia V., tel:+38 (044) 4229630, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Laboratory of Chemisorption staff 

Tertykh Valentyn A., DSc, Chief Scientist,

tel.:+38 (044) 4229673; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; This email address is being protected from spambots. You need JavaScript enabled to view it.

Bolbukh Iuliia M., PhD, Senior Researcher,

tel.:+38 (044) 4249468; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Budnyak Tetyana M., PhD, Junior Researcher,

tel.:+38 (044) 4249468, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. This email address is being protected from spambots. You need JavaScript enabled to view it.

Korobeinyk Alina V., PhD in Chemistry of Brighton University (Great Britain),

Research Associate, tel.:+38 (044) 4249468; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Kozakevych Roman B., PhD, Research Associate,

tel.:+38 (044) 4249468; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Kuzema Pavlo O., PhD, Senior Researcher,

tel.:+38 (044) 4249468; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Polishchuk Lilia M., PhD, Junior Researcher,

tel.:+38 (044) 4249468; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Protsak Iryna S., PhD, leading engineer,

tel.:+38 (044) 4249468, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. This email address is being protected from spambots. You need JavaScript enabled to view it.

Sevostyanov Stanislav V., leading engineer,

tel.:+38 (044) 4249468; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

 

Recent Publications

1. R.P. Pogorilyi, I.V. Melnyk, Y.L. Zub, G.A. Seisenbaeva, V.G. Kessler. Immobilization of urease on magnetic nanoparticles coated by polysiloxane layers bearing thiol- or thiol- and alkyl-functions // J. Mater. Chem. B. – 2014. – 2. – Р.2694-2702

2. R.P. Pogorilyi, I.V. Melnyk, Y.L. Zub, S. Carlson, G. Daniel, P. Svedlindh, G.A. Seisenbaeva, V.G. Kessler. New product from old reaction: uniform magnetite nanoparticles from iron-mediated synthesis of alkali iodides and their protection from leaching in acidic media // RSC Advances. – 2014. – 4. – Р.22606-22612.

3. O.A. Dudarko, C. Gunathilake, V.V. Sliesarenko, Yu.L. Zub, M. Jaroniec. Microwave-assisted and conventional hydrothermal synthesis of ordered mesoporous silicas with P-containing functionalities // Colloids and Surfaces A: Physicochem. Eng. Aspects. – 2014. - 459. - P.4-10.

4. G.I. Nazarchuk, I.V. Melnyk, Yu.L. Zub, O.I. Mokridina, A.I. Vezentsev. Mesoporous silica containing ≡Si(CH2)3NHC(S)NHC2H5 functional groups in the surface layer // Journal of Colloid аnd Interface Science. – 2013. – 389. – P.15–120.

5. V.V. Sliesarenko, O.A. Dudarko, Y.L. Zub, G.A. Seisenbaeva, V.G. Kessler, P. Topka, O. Šolcova. One-pot synthesis of mesoporous SBA-15 containing protonated 3-aminopropyl groups // J. Porous Mater. – 2013. - V. 20. - P. 1315-1321.

6. R.P. Pogorilyi, I.V. Melnyk, Y.L. Zub, G.A. Seisenbaeva, V.G. Kessler, M. M.Shcherbatyik, A. Košak, A. Lobnik. Urease adsorption and activity on magnetite nanoparticles functionalized with monofunctional and bifunctional surface layers //Journal of Sol-Gel Science and Technology. – 2013. - V.68, №3. - P. 447-454.

7. I.V. Melnyk, Y.L. Zub. Preparation and characterisation of magnetic nanoparticles with bifunctional surface layer ≡Si(CH2)3NH2/≡SiCH3 (or ≡SiC3H7–n) // Microporous and Mesoporous Materials. – 2012. – V.154. – P.196–199.

8. I.V. Melnyk, V.P. Goncharyk, N.V. Stolyarchuk, L.I. Kozhara, А.S. Lunochkina, Yu.L. Zub, B. Alonso. Dy3+ sorption from water solutions by mesoporous silicas functionnalized by phosphonic acid groups // Journal of Porous Materials. – 2012. – V.19. – P.579–585.

9. I.V. Melnyk, M. Fatnassi, T. Cacciaguerra, Y.L. Zub and В. Alonso. Spray-dried porous silica microspheres functionalised by phosphonic acid groups // Microporous and Mesoporous Materials. – 2012. – V.152. – P.172–177.

10. V.V. Tomina, G.R. Yurchenko, A.K. Matkovsky, Yu.L. Zub, A. Kosak, A. Lobnik. Synthesis of polysiloxane xerogels with fluorine-containing groups in the surface layer and their sorption properties // Journal of Fluorine Chemistry. 2011. – 132. – Р.1146–1151.

11. Yu.L. Zub, N.V. Stolyarchuk, M. Barczhak, A. Dabrowski. Surface heterogeneity of polysiloxane xerogels functionalized by 3-aminopropyl group // Appl. Surf. Sc. – 2010. – V.256. – Р.5361–5364.

12. G.I. Dobryanskaya, V.P. Goncharik, L.I. Kozhara, Yu L. Zub, A. Dabrowski. Complex formation involving Hg2+ ions on the surface of the polysiloxane xerogels functionalized by 3-mercaptopropyl groups // Russian Journal of Coordination Chemistry.- 2009-. - Vol. 35, N 4. - P. 264–271.

13. I.V. Melnyk, Y.L. Zub, E. Véron, D. Massiot, T. Cacciagarra, B. Alonso. Spray-dried mesoporous silica microspheres with adjustable textures and pore surfaces homogenously covered by accessible thiol functions // J. Mater. Chem. – 2008. – 18. – P.1368–1382.

14. Yu.L. Zub, I.V. Melnyk, M.G. White, B. Alonso. Structural features of surface layers of bifunctional polysiloxane xerogels containing 3-aminopropyl groups and 3-mercaptopropyl groups // Ads. Sci. Technol. – 2008. – V. 26, No ½. – P.119–133.

 

 

 
 
 

 

Відділ квантової хімії та хімічної фізики наносистем

 

 

Завідувач відділу

Лобанов Віктор Васильович

доктор хімічних наук, професор

Телефон: + 380(44) 424 94 72
Факс: + 380(44) 424 35 67
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

У відділі працює 12 спеціалісти, серед них 1 доктор і 7 кандидатів наук. Співробітниками підрозділу опубліковано 2 монографії, 2 підручники для вищої школи, 266 наукових статей, захищено 1 докторську та 7 кандидатських дисертацій.

 

Напрямки досліджень

Моделювання сучасними методами квантової хімії:

– властивостей молекулярних форм діоксиду силіцію – фулереноподібних молекул та нанотрубок;

– механізму утворення оксидного шару при взаємодії молекулярного кисню або води з поверхнею кристалічного силіцію;

- взаємодії поверхні кремнезему з розчинами електролітів;

– фізико-хімічних характеристик упорядкованої системи локальних дефектів графеноподібних кластерів та вуглецевих нанотрубок (ВНТ);

– аномальної дифузії адсорбованих молекул на поверхні ізольованих наночастинок та в системах на їх основі;

– механізму утворення та властивостей квантових точок германію на поверхні Si(001).

Розробка методу побудови стехіометричних моделей мінімального розміру наночастинок бінарних сполук, що зберігають ознаки кристалічності та відтворюють симетрію елементарних комірок відповідних твердих тіл.

Структурна модифікація нанорозмірних багатошарових систем оптимізацією параметрів епітаксійного росту з метою розширення впливу міжзонних переходів на фоточутливість та фотоперетворення експерименталоно отриманих зразків.

Дослідження методами атомно-силової мікроскопії морфології епітаксійно вирощених ансамблів квантових точок германію на грані Si(001), їх електричних та оптичних властивостей.

 

Основні результати за останні роки

Розрахунки методом функціоналу густини (B3LYP, 6-31G**) засвідчили про залежність частоти, форми та інтенсивності нормальних коливань атомів, які входять до складу адсорбційних комплексів молекули кисню на гранях Si(111) і Si(100), від хімічного оточення, що дозволило, з використанням дослідних даних, ідентифікувати низку поверхневих структур, які приводять до утворення оксидного ізолюючого шару на поверхні кристалічного силіцію.

Систематичні дослідження просторової будови та електронної структури наносистем на основі діоксиду кремнію, а саме фулереноподібних молекул складу (SiO2)N та (SiO2)N(H2O)N/2 продемонстрували стабільність структур обох типів (рис. 1). Енергія зв’язку для повністю координованих молекул (SiO2)N знаходиться в інтервалі експериментально досяжних енергій і для молекули (SiO2)60 лежить на 0,38 еВ вище розрахованого значення енергії зв’язування для β‑кристобаліту та на 0,6 еВ нижче, ніж для w-кремнезему. Базуючись на цьому, показана можливість експериментального одержання згаданих структур.

 

Рис. 1. Рівноважна структура сфероподібних молекул діоксиду кремнію (SiО2)N2O)N/2.

Розрахунки методом функціоналу густини (B3LYP, 6-31G**) засвідчили, що основний електронний стан вуглецевих нанокластерів С54 – С216 ідеальної гексагональної форми не синглетний, а відповідає вищим мультиплетам. Їхня рівноважна просторова будова така, що кон’югована система зовнішнього циклічного ланцюга становить відносно самостійну систему, яка слабко спряжена з центральною частиною кластера. Розподіл молекулярного електростатичного потенціалу для основного електронного стану розглянутих кластерів має значну анізотропію.Для спектра одноелектронних рівнів енергії характерно те, що деякі МО, розподілені по зв’язкам зовнішнього циклічного ланцюга, залишаються вакантними, хоча відповідні їм енергії виявляються нижчими енергії фрон-тальних зайнятих МО. Магнітний момент кластерів, які мають лише зиґзаґоподібні краї, визначається наявністю в них двокоординованих атомів вуглецю із сильно локалізованими на них електронними станами.

Розрахунки енергій з використанням рівноважної просторової структури конфігурацій, утворених при взаємному обміні атомів германію поверхневого димера =Ge–Ge= з атомами кремнію поверхневих димерів =Si–Si= грані Si(001) показали, що вони незначно відрізняються від вихідної конфігурації з чистим германієвим димером. Це служить непрямим доказом можливості дифузійного впровадження адсорбованих атомів германію у кремнієву підкладинку з одночасним виходом із неї атомів Si і утворенням змішаних поверхневих =Si–Ge= димерів.

Теоретичне відтворення зсувів ліній рентгенофотоелектронних спектрів адсорбційних комплексів в залежності від розміщення атомів Ge відносно поверхні дозволило пояснити великі енергії утворення структур Ge•Si(001), 2Ge•Si(001) та Ge2•Si(001).

Методом DFT, B3LYP, 6-31G** з’ясовано, що взаємодія диметилкарбонату (ДМК) з поверхнею кремнезему відбувається через утворення шестичленного циклічного перехідного стану із розривом силоксанового зв’язку та збільшення кількості прищеплених до поверхні метоксильних груп. Взаємодія молекули ДМК відбувається з меншим енергетичним ефектом при участі у реакції атомів кремнію, які оточені більшою кількістю силіцій-кисневих тетраедрів. Наступна атака молекули DMC відбувається на атом кремнію, що знаходиться поряд із атомом кремнію, до якого прищеплена метоксильна група.

На основі проведених розрахунків встановлено, що в сильно кислому середовищі на поверхні кремнезему ймовірне утворення катіонної форми силанольної групи за рахунок перенесення протона від іона гідроксонію до атома кисню силанольної групи. Константа депротонування катіонної форми силанольної групи залежить від природи аніона і зростає за абсолютною величиною при збільшенні його радіуса. Розглянуті моделі дають змогу розрахувати значення точки нульового заряду поверхні кремнезему, що відповідає експериментально отриманим значенням.

Розрахунки з використанням розроблених моделей гідратованих лужних сполук для молекулярного та іонного станів за участю молекул води та силанольних груп поверхні кремнезему засвідчили про, можливість депротонування силанольної групи. Обчислені величини зміни вільної енергії Гіббса використано для визначення констант іонного обміну, які збільшуються в ряду Li < Na < K, що корелює з експериментальними величинами адсорбції.

Визначено точкові групи симетрії мінімальних моделей стехіометричних наночастинок бінарних неорганічних сполук АВ, АВm та АmВm. Запропоновано класифікацію наночастинок щільноупакованих, каркасних, шаруватих, ланцюгових та острівних твердих тіл, які зберігають ознаки кристалічності і належать до неповно-, повно-, та гіпервалентних структур, за просторовою будовою, структурним та структурно-валентним типом. Виконано аналіз можливості застосування методів квантової хімії для передбачення структурної стабільності молекулярних моделей твердих тіл.

В структурах з нанокластерами (НК) Ge, які вирощені на шарі оксиду кремнію при низьких температурах, встановлено існування двох оптично індукованих усталених станів з більш високими і більш низькими значеннями поверхневої провідності, в порівнянні з рівноважним станом. Результат фотоіндукованих змін залежить від енергії фотонів із-за різних типів електронних переходів, які мають місце в Ge-НК/SiO2/Si структурах. Залишкова фотопровідность спостерігається після збудження електрон-діркових пар в Si(001) підкладинки при міжзонному поглинанні в Si (рис. 2).

Рис. 2. Спектри латеральної фотопровідності при 50 К: гетероструктур з НК Ge на поверхні SiOx (крива 1); структури з НК Ge, модифікованої осадженням Si (крива 2); структури з шаром Si товщиною 25 нм осадженим на верхній частині НК Ge (крива 3).

 

Доведено, що надлишкова провідність обумовлена просторовим розділенням носіїв струму макроскопічними полями в збідненому приповерхневому шарі Si. Міжзонні переходи в НК Ge створюють локалізовані дірки безпосередньо в Ge, що призводить до оптично індукованого просторового перерозподілу захоплених позитивних зарядів між рівнями міжфазної границі SiO2/Si і локалізованих станів НК Ge, які підвищують зміну електростатичного потенціалу в підкладинці Si і, отже, зменшення поверхневої провідності при стаціонарному фотозбудженні. Отримані результати показують, що дірка захоплена на НК Ge і міжфазними станами, має значний вплив на поверхневий транспорт в структурах Ge-НК/SiO2/Si. Встановлена можливість оптичного контролю перемикання між різними режимами системи провідності, яка може бути використана для конструкції пристроїв оптичної пам'яті (рис. 3).

 

Рис. 3. Зонна діаграма структури Ge-НК/SiO2/Si. Стрілками показані міжзонні електронні переходи в с-Si і НК Ge (а); коливання електростатичного заряду в площині поверхні р-Si підкладинки (б).

 

 

Співробітники відділу

Лобанов Віктор Васильович, доктор хімічних наук,

провідний науковий співробітник, тел.:+380(44) 4249472; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Варавка Олена Володимирівна, технік, тел.:+380(44) 4229660

Гребенюк Анатолій Георгійович, кандидат хімічних наук, старший науковий

співробітник, тел.:+380(44) 4229660;

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Дем'яненко Євгеній Миколайович, кандидат хімічних наук,  науковий

співробітник, тел.:+380(44) 4229660;

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Карпенко Оксана Сергіївна, провідний інженер,

тел.:+380(44) 4229635;

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Козирєв Юрій Миколайович, кандидат фізико-математичних наук,

провідний науковий співробітник, тел.:+380(44) 5250930; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Кравченко Андрій Анатолійович, молодший науковий співробітник

тел.:+380(44) 4229635; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Теребінська Марія Іванівна, кандидат хімічних наук,  науковий

співробітник, тел.:+380(44) 4229632;

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Ткачук Ольга Іванівна, провідний інженер,

тел.:+380(44) 4229635; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Філоненко Оксана В’ячеславівна, кандидат хімічних наук, науковий співробітник,

тел.:+380(44) 4229635; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Смірнова Олеся Валентинівна, кандидат хімічних наук, молодший науковий

співробітник, тел.:+38 (044) 4229630;

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Цендра Оксана Михайлівна, кандидат хімічних наук,  науковий співробітник

тел.:+380(44) 4229635; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Публікації останніх років

1. O.I. Tkachuk, M.I. Terebinskaya, V.V. Lobanov, A.V. Arbuznikov. Influence of the Localization of Ge atoms within the Si(001)(4x2) surface layer on semicore one-electron states // Computation. -  2016. - V.4, N1. - 14.

2. V.P. Shkilev. Feynman-Kac equations for random walks in disordered media // Math. Model. Nat. Phenom. - 2016. - V. 11, N3. -  2016. - P. 1–13. DOI: 10.1051/mmnp/201611301

3. V. Lysenko, S. Kondratenko, Ye. Melnichuk, V. Lobanov, M. Terebinska, Yu. Kozyrev. Photoelectric properties of Si/Ge heterostructures with nanoscale objects // (Proceedings) International conference Advanced materials and technologies. - (21-23 October 2015, Tbilisi, Georgia). - P. 143-147.

4. A.A. Kravchenko, V.S. Kuts, M.D. Tsapko, T.V. Krupskaya, V.V. Turov. Mechanisms of the hydration of A-300 aerosol with adsorbed chlorides of alkali metals in an organic medium // Russ. J. Phys. Chem. A. – 2015. - V. 89, N 5. – P.786–792.

5. O.V. Filonenko, V.S. Kuts, M.I. Terebinska, V.V. Lobanov. Quantumchemical calculation of 29Si NMR spectrum of silicon dioxide fullerene-like molecules // Chemistry, Physics and Technology of Surface. - 2015. - V. 6., N 2. - P. 263-268.

6. E. Demianenko, M. Ilchenko, A. Grebenyuk, V. Lobanov, O. Tsendra. A theoretical study on ascorbic acid dissociation in water clusters // J. Molec. Modeling. – 2014. – V. 20, N 3. - P.2128(1-8).

7. O. Tsendra, A.Michalkova Scott, L. Gorb, A.D. Boese, F. Hill, M. Ilchenko, D. Lesz-czynska, J. Leszczynski. Adsorption of nitrogen-containing compounds on the (100) α-quartz surface: Ab initio cluster approach // J. Phys. Chem. C – 2014. – V. 118, N6. – P. 3023–3034.

8. М.І. Теребінська. Частоти нормальних коливань адсорбційних комплексів молекулярного кисню на грані Si(111), розраховані в кластерному наближенні // Фізика і хімія твердого тіла. – Т. 15, № 2, 2014. – С. 258 – 263.

9. V.P. Shkilev. Comment on “Anomalous versus Slowed-Down Brownian Diffusion in the Ligand-Binding Equilibrium” // Biophys. J. – 2014. – V.106, N11. - 2541–2543.

10. A.A. Mykytiuk, S.V.Kondratenko, V.S. Lysenko, Yu.N. Kozyrev Photocurrent spectroscopy of Ge nanoclusters grown on oxidized silicon surface // Proceedings of SPIE - The International Society for Optical Engineering. – 2014. – Vol. 9126: Nanophotonics. – P. 212-216.

11. E.M. Demianenko, A.G. Grebenyuk, V.V. Lobanov, V.A. Tertykh, I.S. Protsak, Yu.M. Bolbukh, R.B. Kozakevych. Quantum chemical study on interaction of dimethyl carbonate with polydimethylsiloxane // Хімія, фізика та технологія поверхні. – 2014. – Т. 5, № 5. – С.473-479.

 

Department of Biomedical Problems of Surface

 turo

Head of Department

Turov Volodymyr V.

Doctor of Sciences (Chemistry),Professor

 

Telephone: + 38 (044) 424 94 53

Fax: + 38 (044) 424 35 67

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;

 

Department staff is 18 co-workers including 3DSc, 10 PhDs, and 2 PhD students. From 1986, the Department researchers have published 5 books, individual chapters in 11 collective monographs, 350 scientific papers, and obtained 18 patents for invention; 2 doctor and 10 candidate dissertations were defended.

 

Directions of investigations

Study of regularities of substance self-organization in the limited space of pores of adsorbents and biological structures of cellular or subcellular nature; surface influence on the parameters of phase transitions involving water and van der Waals liquids; nature of the biological activity of nanosized oxides; development of bio-mineral highly biocompatible composite systems and specific to certain types of drugs. The practical direction of work is aimed to create a new generation of entherosorbents and dietary supplements with a strong antioxidant and immunomodulating activity for treatment the toxicosis of various etiologies; composite systems for the parodontal disease treatment; remedies for stimulation of reproductive cell vital processes; mixtures to protect and stimulate the plant growth.

 

Main results for the recent years

It is found the possibility to display quantum effects at the substance adsorption in nanosized pores that are observed due to the presence of adsorption potential minimum not only near pore walls, but also in their middle part. It is shown that for water minimum in the middle of interplane gap has a lower energy, but its occupancy at T> 280 K is small and increases only with temperature decreasing. Accordingly, place of molecule localization in the pore space varies with temperature. At the presence of several adsorbates, these effects are the basis in the formation of supramolecular self-assembled water-organic structures in the pores of solids and weakly hydrated biological objects.

Shown, that the structure of interfacial water clusters is defined by medium. When exposed to air only clusters of strongly associated water with structure similar to liquid water structure are formed. In nonpolar liquids (CCl4, decane) a certain amount of organic phase may be dissolved in these clusters at the simultaneous formation of van der Waals clusters that dissolve a certain water amount. The effect increases with increasing of temperature and medium polarity. So in CDCl3 concentrations of both cluster types are comparable. With the introduction of polar substance (CD3CN, (CD3)2SO) a third type of clusters enriched with water and polar component is formed. Cluster water forms easily dissolve hydrophobic and hydrophilic organic compouds, but almost not dissolve mineral acids (HCl, H2O2, H3PO4, H3PO3), which can be released from solution in the form of individual substances.

It was found general regularities of changes in the spectral, protolytic, structural, solubility and adsorption properties of herbal flavonoids (quercetin and rutin) in the presence of cationic surfactants (decametoxine and miramistin) in solution and on the nanosilica surface. New stomatological paste composed of flavonoid, antiseptic surfactant miramistin or decametoxine and fumed silica was formulated. As a result of physico-chemical researches optimal conditions and component ratio to form supramolecular compounds of flavonoid with surfactant in the presence of silica were found. Clinical trials have shown higher efficacy of the three-component paste for parodont treatment in comparison with medicines containing only antiseptic and adsorbent.

Nanocomposites which include metal oxides immobilized on the nanoparticles of fumed silica were developed and their effect on biological systems of plant origin was studied. As a result of biometric testing of aqueous system activity of nanocomposites MxOy/SiO2, (M = Ni, Mg, Mn, Cu, Zn) during germination of wheat seeds it was found that metal nanocomposites primarily affect the formation of plant roots, particularly their root number and total weight.

A remedy for fixing completely removable dental prostheses based on the system: natural polysaccharide-silica-flavonoid-cationic surfactant was developed. Pharmacological and clinical studies have shown that this tool provides long fixative effect and prevents the appearance of relapse of traumatic prosthetic stomatitis.

Found that silica surface modification with protein BSA or oligosaccharides (sucrose, raffinose) promotes further immobilization of amine containing carbohydrates – N-acetyl-D-glucosamine, D-galactosamine and N-acetylneuraminic acid. Determined that the presence of the protein in such nanocomposites reduces their biological activity by stabilizing the structure of modifier molecules on the silica surface. It is shown that nanocomposite (silica/sucrose), unlike silica, largely capable to adsorption interaction with fructose of semen plasma of unfrozen bull gametes, which is the main energy substance that provides movement of these cells. This suggests that its activation in the presence of nanocomposite is possible due to the formation of complex silica/sucrose/fructose too.

It is developed the formulation of a new generation of dietary supplements "Fitosyl" which contains fumed silica and dispersed powders of medicinal plants. Results of clinical trials have shown that dietary supplements "Fitosyl" suitable for health-care food, particularly for chronic diseases of the respiratory, digestive, liver, gall bladder, gastrointestinal tract, cardiovascular system, at parasitic and helminth infestation, allergies, poisonings, etc.

The method of low-temperature 1H NMR spectroscopy revealed that on the interfaces of fumed silica A-300, modified by adsorption of vitreous components, in organic media of different polarity clusters of strongly and weakly associated water are formed. By means of variation of the organic medium composition the state of water at silicacontact with nanosized areas of the intestinal mucosa with various hydrophobic-hydrophilic properties can be modeled.

 

Department staff

TurovVolodymyr V., DSc, Head of Department,

tel.:+ 38 (044) 424 94 53; fax: + 38 (044) 424 35 67, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Bаresh Oleksandr M., leading engineer,

tel.:+ 38 (044) 422 96 68, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Barvinchenko Valentina M., PhD, Senior Researcher,

tel.:+ 38 (044) 424 94 79, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Fedyanina Tetyana V., PhD, Researche Associate,

tel.: + 38 (044) 422 96 68, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Gerashchenko Igir I., DSc, Leading Researcher,

tel.: + 38 (044) 424 94 52; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;

Golovan Alina P., PhD,  Researcher Associate,

tel.: + 38 (044) 424 94 79, E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Klimenko Natalia Yu., PhD,  Researcher Associate,

tel.: + 38 (044) 422 96 85, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Krupska Tetyana V., PhD, Senior Researcher,

tel.: + 38 (044) 422 96 91, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Lipkovska Natalia O., PhD, Senior Researcher,

tel.:+ 38 (044) 424 94 79, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Novikova Olena A., leading engineer,

tel.:+ 38 (044) 422 96 85, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Nechipor Oksana V., PhD, Junior Researcher,

tel.: + 38 (044) 422 96 91, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Postrelko Valentin M., DSc, Senior Researcher,

tel.: + 38 (044) 424 94 79;

Rugal Anna O., PhD, Research Associate,

tel.: + 38 (044) 422 96 98, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Sedukina Tetyana S., technician,

tel.:+ 38 (044) 422 96 57, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Siora Iryna V., PhD, Junior Researcher,

tel.: + 38 (044) 422 96 85, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Turanska Svitlana P., PhD, Research Associate,

tel.: + 38 (044) 424 94 79, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

 

Postgraduate students

Filatova Kateryna O., tel.: + 38 (044) 422 96 91

Stepanuk Kateryna O., tel.: + 38 (044) 424 94 52;

 

Recent publications

1. V.M. Gun’ko, L.P. Morozova, A.A. Turova, A.V. Turov, V.E. Gaishun, V.M. Bogatyrev , V.V. Turov. Hydrated phosphorus oxyacids alone and adsorbed on nanosilica. // J. Colloid Interface Sci. – 2012. – V.368. – P.263–272.

2. S.V. Mikhalovsky, V.M. Gun’ko, V.A. Bershtein, V.V. Turov, L.M. Egorova, Claudine Morvan, L.I. Mikhalovska. A comparative study of air-dry and water swollen flax and cotton fibres. // RSC Adv. – 2012. – P.1–7.

3. V.M. Gun’ko, V.V. Turov, A.V. Turov. Hydrogen peroxide-water mixture bound to nanostructured silica // Chemical Physics Letters. – 2012. – V.531. – P.132–137.

4. S.P. Turanska, A.N. Kaminskiy, N.V. Kusyak, V.V. Turov, P.P. Gorbyk. Synthesis, properties and applications of magnetically controlled adsorbents. // Sb. Poverhnost. - 2012. - Is. 4 (19) - P.266–292. (in Russian).

5. I.I. Gerashchenko, А.І. Markina, E.М. Pakhlov, V.F. Gorchev. Comparison of the structural-adsorption characteristics of preparations of kaolin and dioctahedron smectite dioktaedrychnoho // Farmacevticheskiy. zhurnal. - 2012. - № 3.-P.58-64 (in Russian).

6. N.P. Galagan, V.M. Gun'ko, N.G. Porkhun, E.A. Novikov, V.V. Turov. Effect of dispersion of nanosilicas on their bioactivity in relation to bull gametes. // Dopovidi NAN Ukrainy. - 2012. - № 5. - P. 126-133 (in Russian).

7. V.V. Turov, V.M. Gun’ko, O.P. Kozinchenko, S.R. Tennison, S.V. Mikhalovsky. Effect of temperature and a weakly polar organic medium on water localization in slit-like pores of various sizes in microporous activated carbon // Physical chemistry of surface phenomena. – 2011. – V.85, N 11. – P.1954–1959.

8. T.V. Kulik, V.N. Barvinchenko, B.B. Palyanytsya, N.A. Lipkovska, O.O.Dudik. Thermal transformations of biologically active derivatives of cinnamic acid by TPD MS investigation // J. Anal. Appl. Pyrolysis. - 2011. - V.90. - P.219–223.

9. V.V. Turov, V.F. Chehun, V.N. Barvinchenko, T.V. Krupska, Yu.I. Prylutskyy, P. Scharff, U. Ritter. Low-temperature 1H-NMR spectroscopic study of doxorubicin influence on the hydrated properties of nanosilica modified by DNA // J. Mater Sci: Mater Med. – 2011. – V. 22. – P.525–532.

10. V.M. Gun’ko, V.V. Turov, O.P. Kozinchenko, V.G. Nikolaev, S.R. Tennison, S.T. Meikle, E.A. Snezhkova, F. Ehrburger-Dolle, I. Morfin, D.O. Klymchuk, S.V. Mikhalovsky Activation and structural and adsorption features of activated carbons with highly developed micro-, meso- and macroporosity // Springer: Adsorption. – 2011. – V.17. – P.453–460.

11. E.V. Yuhmenko, V.D. Yukhimenko, V.M. Bogatyrev, V.V. Turov. Nanosilicas as active agents in protective-stimulation compositions for presowing treatment of seeds of agricultural cultures// Nanomaterials and nanocomposites in medicine, biology, ecology / Eds. A.P. Shpak, V.F. Chekhun. - Kiev: Naukova Dumka.- 2011.- P.402-421 (in Russian).

12. I.I. Gerashchenko, А.І. Markina, V.V. Turov. The structure of bound water in the vitreous body according to 1H NMR spectroscopy. // Med. Khimia. – 2011. – V.13, 2(47). – P. 102 – 106 (in Russian).

13. V.M. Gun’ko, V.V. Turov, V.M. Bogatyrev, Petin A.Y., Turov A.V., Trachevskyi V.V., Blitz J.P. The influence of pre-adsorbed water on adsorption of methane on fumed and nanoporous silicas. // Appl. Surf. Sci. – 2011. – P.1306–1316.

14. V.V. Turov, V.M. Gun’ko, A.A. Turova, L.P. Morozova, E.F. Voronin. Interfacial behavior of concentrated HCl solution and water clustered at a surface of nanosilica in weakly polar solvents media // Colloids Surf. A: Physicochemical and Engineering Aspects. – 2011. – P.48–55.

15. V.V. Turov, V.N. Barvinchenko, T.V. Krupska, V.M. Gun’ko, V.F. Chekhun. Hydration properties of a composite material based on highly dispersed silica and DNA // Biotehnologiya. – 2011. – V. 4, № 4. – P. 34 – 49 (in Russian).

16. N.P. Galagan, N.Yu. Klimenko, I.L. Orel, E.A. Novikova, V.V. Turov. Bifunctional nanomaterials based on highly dispersed silica, protein and aminocarbohydrates // Biopolim. i kletka.- 2010, – V.26, №3, – P. 1 – 10 (in Russian).

17. A.P. Golovan, А.А. Rugal, V.M. Gun’ko, V.N. Barvinchenko, J. Skubiszewska-Zieba, R. Leboda, T.V. Krupskaya, V.V. Turov. Modeling of bone tissue by nanocomposite systems based on hydroxyapatite - albumin - gelatin and their properties // Sb. Poverhnost.- 2010. – Is. 17 (2). - P.244 – 265 (in Russian).

18. N.O. Lipkovska, V.M. Barvinchenko, N.F. Kosachevska. Chemical and pharmaceutical research fitokompozytu based on medicinal plants and nanokremnezemu // Sb. Poverhnost. - 2010. – Iss. 17 (2) - P.322 – 330 (in Russian).

19. V.V. Turov, V.M. Gun’ko, K.N. Khomenko, A.Yu. Petin, A.V. Turov, P.P. Gorbik. Hydrogen Adsorption on Silicate in the Presence of Water and Benzene // Russ. J. Phys. Chem. A. – 2010. – V.84, N1. – Р.70–75.

20. V.M. Gun’ko, V.V. Turov, V.N. Barvinchenko, A.A. Turova, A.A. Rugal, V.I. Zarko, R. Leboda. Nonuniformity of starch/nanosilica composites and interfacial behaviour of water and organic compounds // Appl. Surf. Sci. – 2010. – V.256, N12. – Р. 5275–5280.

21. Entherosorption in complex treatment of acute surgical diseases of the abdominal cavity // Eds. A.A. Viltsanyuk, I.I. Gerashchenko. - Vinnitsa-Kiev-Kharkov: Oma-Pak, 2009. – 128 p. (in Russian).

 

 

Department of Amorphous and Structurally Ordered Oxides

 gunk

 

Head of Department

Gun’ko Volodymyr M.

Doctor of Sciences (Chemistry),

Professor

 

Telephone: + 380 44 422-96-27

Fax: + 380 44 424-35-67

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Department staff is 12 co-workers including 2 DSc and 7 PhDs. The Department includes Laboratory of Surface Modification (Head of Lab, DSc E.F. Voronin). From 1986, the Department researchers have published 4 books, 30 chapters in collective books, 10 review articles and more than 500 original papers, and obtained 32 patents of Ukraine, Russia, USA, Germany, and USSR; 1 DSc and 10 PhD theses were defended.

 

Directions of investigations

Synthesis of novel oxide materials and surface modification; determination of textural characteristics of disperse and porous adsorbents; analysis of properties of nanocomposites and aqueous dispersions of oxides, adsorption of polymers and other compounds using FTIR, dielectric relaxation spectroscopy, thermally stimulated depolarization current (TSDC), TPD-MS, adsorption, QELS, DSC, rheology, NMR, TG/DTA, NMR-, TSDC-, DSC-cryoporometry, NMR-relaxometry, TG-thermoporometry, quantum chemistry, theory of adsorption and reaction mechanisms, development of computer methods of data analysis.

 

Main results for the recent years

The influence of complex oxides structure on their adsorption and catalytic properties was determined, as well as photodestruction and pyrolysis of organics at their surfaces. Ideas on structural hierarchy of nanooxides were developed. Changes in the oxide structure due to the synthesis effects or the influence of mechanical or thermal activation, media and adsorbates were elucidated. The influence of the morphology and chemical structure of complex nanooxides was analyzed with respect to the behavior of the colloidal systems. The mechanisms of reactions of organosilicon compounds (OSC) with a surface of silicas in gaseous and liquid media were analyzed with consideration of different solvent effects. The influence of the surface modification of silicas by OSC on the characteristics of the suspensions was studied depending on the modifier content and reaction conditions. The models of water adsorbed onto a surface of silica, mixed oxides, carbon-mineral adsorbents, polymers, etc. were developed using the experimental and theoretical methods. Cryoporometry methods based on the data of TSDC, DSC, NMR, as well as NMR-relaxometry and thermoporometry based on TG were used to study soft (biomaterials and bioobjects) and solid (oxides, carbons, composites) materials in weakly and strongly hydrated states. Comprehensive investigations of alumina, silica, titania, zirconia, germania, and complex oxides allowed to establish certain regularities of the “structure – property” types related to the pH dependence of the EDL structure, Debye screening length, particle size distributions, adsorption of small molecules and ions or polymers, catalytic destruction of adsorbed organics, dipolar and ionic relaxation of structured water and adsorbed polymers, etc. The methodology of calculations of the pore size distributions using complex pore models was developed for individual, complex and hybrid adsorbents. To solve coupled integral equations, the self-consistent regularization method with maximum entropy method was developed and implemented in investigations of texturally and chemically complex materials. The structure of adsorption complexes of biomolecules and adsorbed layer of biopolymers at a surface of different oxides, the mechanisms of adsorption and reactions were analyzed in detail using a set of experimental methods. Features of surface reactions with participation of vitamins, carbohydrates, glycosides, coumarins, flavonoids, chitosan, dextran, etc. were established for different oxides. A significant portion of the results was obtained in collaboration with colleagues from Universities from Lublin (Poland), Illinois, Cincinnati, New York (USA), Brighton (UK), Athens (Greece), Nancy (France), Queensland (Australia), Kyiv and several Institutions from NAS of Ukraine and RAS of Russia.

 

Department staff

Gun’ko Volodymyr M., DSc, Head of Department, tel.: + 38 (044) 422 96 27

fax: + 38 (044) 424 35 67, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; This email address is being protected from spambots. You need JavaScript enabled to view it.

Andriyko Lyudmyla S., PhD, Research Associate,

tel.: + 38 (044) 422 96, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Goncharuk Olena V., PhD, Senior Researcher,

tel.: + 38 (044) 422 96 43, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Kazakova Olga O., PhD, Senior Researcher,

tel.: + 38 (044) 422 96 27, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Matkovskyi Oleksandr K., PhD, Research Associate,

tel.:+38 (044) 4229609; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Nychiporuk Yuriy M., Junior Researcher,

tel.: + 38 (044) 422 96 27, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Paentko Viktoria V., Junior Researcher,

tel.:+38 (044) 4229627; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Laboratory of Surface Modification staff

Voronin Evgeniy F., DSc, Head of Lab, tel.: + 38 (044) 424-94-63,

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; This email address is being protected from spambots. You need JavaScript enabled to view it.

Gabchak Oleksandra L., Junior Researcher,

tel.: + 38 (044) 424-94-63, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Guzenko Natalia V., PhD, Senior Researcher,

tel.: + 38 (044) 424-94-63, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Nosach Lyudmyla V., PhD, Senior Researcher,

tel.: + 38 (044) 424-94-63, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Pakhlov Evgeniy M., PhD, Senior Researcher,

tel.: + 38 (044) 422-96-27, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Recent publications

1. V.M. Gun’ko, O.P. Kozynchenko, S.R. Tennison, R. Leboda, J. Skubiszewska-Zięba, S.V. Mikhalovsky. Comparative study of nanopores in activated carbons by HRTEM and adsorption methods // Carbon. - 2012. – V.50. – P.3146 –3153.

2. R.L.D. Whitby, V.M. Gun’ko, A. Korobeinyk, R. Busquets, A.B. Cundy, K. László, J. Skubiszewska-Zięba, R. Leboda, E. Tombácz, I.Y. Toth, K. Kovacs, S.V. Mikhalovsky. Driving forces of conformational changes in single-layer graphene oxide // ACS Nano. – 2012. – V. 6(5). – P.3967–3973.

3. V.M. Gun’ko, V.V. Turov. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. - New York: Taylor & Francis, 2013. - 1040 p.

4. V.M. Gun’ko, I.N. Savina, S.V. Mikhalovsky. Cryogels: Morphological, structural and adsorption characterization // Adv. Colloid Interface Sci. – 2013. – V.187–188. –P.1–46.

5. N. Kothalawala, J.P. Blitz, V.M. Gun’ko, M. Jaroniec, B. Grabicka, R.F. Semeniuc. Post-synthesis surface modified silicas as adsorbents for heavy metal ion contaminants Cd(II), Cu(II), Cr(III), and Sr(II) in aqueous solutions // J. Colloid Interface Sci. – 2013. – V.392. – P.57–64.

6. V.M. Gun’ko, V.V. Turov, R.L.D. Whitby, G.P. Prykhod'ko, A.V. Turov, S.V. Mikhalovsky. Interactions of single and multi-layer graphene oxides with water, methane, organic solvents and HCl studied by 1H NMR // Carbon. – 2013. – V.57. – P.191–201.

7. V. V. Turov, V. M. Gun'ko, V. I. Zarko, O. V. Goncharuk, T. V. Krupska, A. V. Turov, R. Leboda, J. Skubiszewska-Zięba. Interfacial behavior of n-decane bound to weakly hydrated silica gel and nanosilica over a broad temperature range // Langmuir. – 2013. – V. 29(13). - P. 4303-4314.

8. V.M. Gun’ko, V.V. Turov, R. Leboda, J. Skubiszewska-Zięba, B. Charmas. Confined space effects driving to heterogenization of solutions at the interfaces // Adsorption. - 2013. – V.19. – P.305–321.

9. P.S. Shuttleworth, V.L. Budarin, R.J. White, V.M. Gun’ko, R. Luque, J.H. Clark. Molecular-level understanding of the carbonisation of polysaccharides // Chem. Eur. J. (Chemistry - A European Journal). – 2013. – V.19. – P.9351 – 9357.

10. V.M. Gun’ko, V.V. Turov, V.I. Zarko, E.M. Pakhlov, G.P. Prykhod’ko, O.S. Remez, R. Leboda, J. Skubiszewska-Zięba, J.P. Blitz. High-pressure cryogelation of nanosilica and surface properties of cryosilicas // Colloids Surf. A: Physicochem. Eng. Aspects. – 2013. – V.436. – P.618-632.

11. V.M. Gun’ko. Modeling of interfacial behavior of water and organics // Journal of Theoretical and Computational Chemistry. – 2013. – V.12(7). – P.1350059-1-24.

12. V.M. Gun'ko. Composite materials: textural characteristics // Applied Surface Sci. – 2014. –V.307. – P.444–454.

13. V.M. Gun’ko, V.V. Turov, V.I. Zarko, E.M. Pakhlov, A.K. Matkovsky, O.I. Oranska, B.B. Palyanytsya, O.S. Remez, Y.M. Nychiporuk, Y.G. Ptushinskii, R. Leboda, J. Skubiszewska-Zięba. Cryogelation of individual and complex nanooxides under different conditions // Colloids Surf. A: Physicochem. Eng. Aspects. – 2014. – V.456. – P.261–272.

14. V.М. Gun’ko, V.Ya. Ilkiv, Ya.V. Zaulychnyy, V.І. Zarko, E.M. Pakhlov, М.V. Karpetz. Structural features of fumed silica and alumina alone, blend powders and fumed binary systems // J. Non-Crystal. Solids. – 2014. – V.403. – P.30–37.

15. V.M. Gun’ko, R. Nasiri, S.S. Sazhin. Effects of the surroundings and conformerisation of n-dodecane molecules on evaporation/condensation processes // J. Chem. Phys. – 2015. –V. 142. –P.034502 (1-8).

 

 

Department of Nanomaterials

 gorb

 

 

Head of Department

Gorbyk Petro P.

Doctor of Sciences (Physics & Mathematics)

Professor

 

 

Telephone: + 380 44 424-12-35

Fax: + 380 44 424-35-67

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;

This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Department staff is 17 co-workers including 2 DSc and 9 PhDs. The Department includes Laboratory of Electrophysics of Nanomaterials (Head of Lab. PhD in Phys.& Math. S.M. Mahno). From 1986, the Department researchers have published 9 books, over 400 scientific papers, series of review articles, 4 books for students, and obtained 45 patents for invention, developed the technological regulations for production of "Magnetite U" substance; 2 doctor and 12 candidate dissertations were defended.

 

Directions of investigations

Fundamental properties of nanosized solid-state nonequilibrium-condensed, structural-heterogeneous, cluster-collected, correlated multicomponent systems, in particular, on the basis of active dielectrics, semiconductors, high temperature superconductors, substances with phase transitions of semiconductor-metal and dielectric-superionic types, polymers, their interactions with electromagnetic radiation and other physical fields; nanoengineering processes of directed near-surface layering, surface assembling and molecular designing in the hierarchically structured multilevel nanosystems and multifunctional nanocomposites perspective for the use in electronics, medicine, biology etc.

 

Main results for the recent years

The development of the methodology of obtaining new electronic materials, the formation of a set of modern nanostructure technologies, the experimental determination and study of mechanisms that govern new physical phenomena and effects in nanostructured systems. In particular, the main results are as follows: the optimization methods for photosensitive heterostructures on the basis of A2B6 compounds and their solid solutions have been scientifically substantiated; the mechanisms of phase and structural transformations in the synthesis of high-temperature superconductors have been established and solubility and diffusion of impurities in HTSC have been studied;

the techniques for treatment of high-temperature superconductors by ultrasound, irradiation (neutrons, γ-rays) and electromagnetic (microwave) field have been developed; the low-dimensional oxide and chalcogenide piezoelectric structures have been synthesized and their emission and cathodoluminescence properties have been studied; the broad class of composite materials with specific functional properties including ones that absorb radio frequency electromagnetic radiation have been developed; the physical and chemical processes of assembling biocompatible and bioactive nanocomposites with multi-level hierarchical structures and their interactions with microbiological objects have been studied.

As a result of the researches a number of new specific physical and physical and chemical phenomena and effects have been discovered, new fundamental knowledge has been obtained and the corresponding models have been proposed. This knowledge and these models allow ones to deepen the insight into the follows: the phase transformations during the synthesis of high-temperature superconductors and the mass transfer processes in their bulk and along their surface; the properties of phase interfaces in semiconductor heterostructures; the effects of interfacial interactions on the phase transition characteristics in the solids with unstable lattices; the mechanisms of interactions between external physical fields and multicomponent matrix-disperse systems; the salient features of low-field cold emission form piezoelectric films; the structural-phase states in subsurface layers of pyrogenic nanocomposites of the SiO2 – TiO2 – Al2O3 system; the processes of modification of surface functionality with the aim to ensure the identification of cancer cells, viruses and other specific microbiological objects and to reverse their metabolism.

The practically important results include the development of the following processes and materials: the energy-efficient and environmentally safe process for industrial production of pyrogenic high-disperse oxides; the composite materials of polymer-disperse filler with the phase transitions of conductor-HTSC, semiconductor-metal or dielectric-superionic types; the radar absorbing materials with dynamically controlled electrophysical characteristics and technologically controlled coefficient of thermal expansion; the magnetosensitive biomedical nanocomposites with functions of nanorobots which are promising materials for use as magnet-guided drugs of chemo-, immuno- or radiotherapeutic and hyperthermic actions; and the medicines for decontamination of biological liquids in particular donor blood plasma from viruses.

From left to right (first row): Senior Researcher PhD (Phys.&Math.) M.V. Abramov, Leading Researcher DSc (Tech.) L.S. Semko, DSc (Phys.&Math.) Prof. P.P. Gorbyk, Research Associate A.L. Petranovska, Senior Researcher PhD (Chem.) I.V. Dubrovin;

(second row): technician L.O. Shmygirina, leading engineer A.M. Bagatska, Research Associate PhD (Phys.&Math.) O.M. Lisova, Research Associate PhD (Chem.) L.P. Storozhuk, Junior Researcher O.O. Sap’yanenko, leading engineer Z.G. Kirilyuk, Senior Researcher PhD (Chem.) L.S. Dzyubenko, Research Associate PhD (Phys.&Math.) G.N. Kashyn, leading engineer G.M. Gunya, Senior Researcher PhD (Phys.&Math.) S.M. Makhno.

 

Department staff

Gorbyk Petro P., DSc, Head of Department,

tel.: + 38 (044) 424-12-35;

fax: + 38 (044) 424 35 67; е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abramov Mykola V., PhD, Senior Researcher,

tel.: + 38 (044) 422-96-10, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Bagatska Anna M., leading engineer,

tel.: + 38 (044) 422-96-10, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Dubrovin Igor V., PhD, Senior Researcher,

tel.: + 38 (044) 424-12-35, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Dzyubenko Lidiya S., PhD, Senior Researcher,

tel.: + 38 (044) 422-96-10, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Khutorniy Serhij V., leading engineer,

tel.: + 38 (044) 422-96-10, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Petranovska Alla L., Research Associate,

tel.: + 38 (044) 424-96-79, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Pokutnyi Sergij I., DSc, Leading Researcher,

tel.: +380 44 422-96-10, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Pylypchuk Yevhenii V., PhD, Research Associate,

tel.: + 38 (044) 424-96-79, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Sap'yanenko Oleksandr O., Junior Researcher,

tel.: + 38 (044) 422-96-74, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Storozhuk Lyudmyla P., PhD, Research Associate,

tel.: + 38 (044) 424-96-79, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

 

Laboratory of Electrophysics of Nanoobjects staff

Makhno Stanislav M., PhD, Head of Laboratory,

tel.: + 38 (044) 422-96-10, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Gunya Gryhorij M., leading engineer,

tel.: + 38 (044) 96-10

Lisova Oksana M., PhD, Research Associate,

tel.: + 38 (044) 422-96-10, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Mazurenko Ruslana V., PhD, Research Associate,

tel.: + 38 (044) 96-10, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Prokopenko Sergij L., PhD,  Researcher Associate,

tel.: +38 (044) 422-96-10, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Sirenko Elena G., Junior Researcher,

tel.: + 38 (044) 422-96-10, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Recent publications

  1. P.P. Gorbyk, A.L. Petranovska, M.P. Turelik, S.P. Turanska, O.A. Vasilieva, V.F. Chekhun, N.Y. Luk'yanova, A.P. Shpak, O.M. Korduban. Nanocapsule with nanorobot functions// Patent of Ukraine N 78448 from 25.03.2013.
  2. P.P. Gorbyk, A.L. Petranovska, M.P. Turelik, M.V. Abramov, O.A. Vasilieva. Magnetic liquid // Ukrainian Patent for useful model N 78448 from 25.03.2013.
  3. P.P. Gorbyk, A.L. Petranovska, M.P. Turelik, M.V. Abramov, O. Vasilieva. Production schedules on production of substance "Magnetite U" // Certificate N 46056 on TTR of 7.09.2012. (in Ukrainian).
  4. V.M. Mіschenko, P.P. Gorbyk, M.T. Cartel, M.V. Abramov, O. Vasilieva. Carbon magnetic sorbent // the Patent of Ukraine N 97557 from 27.02.2012.
  5. L.S. Dzubenko, O.O. Sapiyanenko, P.P. Gorbyk, V.M. Mіschenko, N.M. Rezanova, M.A. Tsebrenko, І.A. Miller, V.G. Rezanova. A method for producing fine-fiber filtered Fabric // Ukrainian Patent for useful model N 67423 IPC D 01 F 8/00 from 27.02 2012.
  6. L.S. Semko, P.P.Gorbyk, S.V. Khutornoi. A method for producing a magnetic laminate / / Patent of Ukraine N 20063 from 17.07.2012.
  7. I.M. Mudrak, L.P. Storozhuk, O.A. Spivak, N.V. Abramov, P.P. Gorbyk. Magnetic properties of colloidal systems with the particulate filler structure Fe3O4/AgI // Nanostrukturnoe Materialovedenie. - 2012. – N 3. - P.124 -129. (in Russian).
  8. P.P. Gorbyk, V.F. Chekhun Nanocomposites of medico biologic destination: reality and perspectives for oncology // Functional Materials. – 2012. – V. 19, N 2. – Р.145–156.
  9. L.S. Semko, S.V. Khutornoi, N.V. Abramov, P.P. Gorbyk. Synthesis, structure and properties of nanocomposites of Fe3O4/SiO2 with the developed external surface // Inorganic materials. – 2012. – T. 48, N 4. – P.443-450 (in Russian).
  10. P.P. Gorbyk, I.V. Dubrovin, Y. Demchenko, G.N. Kashin, A.A. Dadykin. The synthesis of nanostructures based on ZnO / / J. Appl. Chemistry. - 2011. - T. 84, N 3. - P.365 -368.
  11. R.V. Mazurenko, S.M. Makhno, V.M. Mіschenko, G.M. Gunja, P.P. Gorbyk. Electrophysical properties of polymeric nanocomposites on the basis of copper iodide // Methallophysics and the Latest Technology. – 20011. – T. 33, No. 12. – Page 1603-1611 (in Ukrainian).
  12. O.M. Garkusha, G.M. Bagatska, S.M. Makhno, P.P. Gorbyk. Influence of low-intensive electromagnetic radiation of millimetric range on processes of activity of Saccharomyces cerevisiae yeast in the aggressive environment // Chemistry, Physics and Technology of Surface. – 2011. – V. 2, N 4. – P.464-498 (in Ukrainian).
  13. L.S. Semko, E.I. Kruchek, S.V. Khutornoi, P.P. Gorbyk. Magnetic gazosensornye systems based on polymers of nanocrystalline nickel and cobalt. // Nanomaterials and Nanocomposites in Medical, Biology, and Ecology. - Kiev: Naukova Dumka, 2011. - P.325 -344. (in Russian).
  14. L.S. Semko, O.I. Kruchek, L.P. Storozhuk, P.P. Gorbyk. Magnetooperated adsorbent on the basis of nanokristalichesky nickel // Metallophysics and the Latest Technology. - 2011. - V. 33, N 7. - P.985 -996 (in Ukrainian).
  15. L.S. Semko, L.P. Storozhuk, P.P. Gorbyk, E.I. Kruchek, N.V. Abramov. Receiving, structure and properties of adsorbents on the basis of magnetite and transitional metals // Nanomaterials and Nanocomposites in Medical, Biology, and Ecology. – Kiev: Naukova Dumka, 2011. - P.309 -324 (in Russian).
  16. P.P. Gorbyk, A.L. Petranovskaya, M.P. Turelik, N.V. Abramov, S.P. Turanska, E. Pilipchuk, V.F. Chekhun, N.Y. Lukyanov, A.P. Shpak, A.M. Korduban. Problem of the directed transport of medicines: condition and prospects // Chemistry, Physics and Technology of Surface. - 2011. -T. 2, N 4. - P.433 -441 (in Russian).
  17. V.M. Gunko, V.V. Turov, P.P. Gorbyk. Water on interphase border. - Kiev: Naukova Dumka, 2009. - 693 p. (in Russian).
  18. P.P. Gorbyk, І.V. Dubrovіn, J.O. Demchenko, M.M. Fіlonenko. Synthesis of hollow spherical silica nanoparticles dioxide // Nanosystems, Nanomaterials and Nanotechnology. - 2009. - V. 7, N 3. - P. 877-885 (in Ukrainian).
  19. І.M. Mudrak, R.V. Mazurenko, P.P. Gorbyk, L.S. Dzubenko, O.I. Oranska, V.V. Levandovsky. Receiving and properties of nanosized AgI // Nanosystems, Nanomaterials and Nanotechnology. - 2009. - T. 7, N 4 - P.1113 - 1119. (in Ukrainian).
  20. P.P. Gorbyk, A.A. Chuiko, M.V. Bakuntseva. Systems with the developed surface and phase transition the conductor – a high-temperature superconductor, the semiconductor metal, dielectric superionics. - Kiev: Naukova Dumka, 2003. - 402 p. (in Russian).

 

 

Department of Physico-chemistry of Carbon Materials

 


Завідувач відділу

Картель Микола Тимофійович,

академік НАН України,
доктор хімічних наук, професор

Телефон: + 380-44-423 80 58
Факс: + 380-44-424 35 67
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

У відділі працює 26 спеціалістів, серед них 2 доктори, 13 кандидатів наук і 2 аспіранти. До складу відділу входять лабораторія електрохімії вуглецевих та неорганічних наноматеріалів (зав. лаб. д. х. н., проф. Тарасенко Ю.О.) та та лабораторія кінетики та механізмів хімічних перетворень на поверхні твердих тіл (зав. лаб. к.х.н. Кулик Т.В.). Співробітниками підрозділу опубліковано 1 книгу, 1 підручник, окремі глави в 5 колективних монографіях, понад 160 наукових статей, отримано 8 патентів на винаходи, захищено 1 кандидатську дисертацію.

 

Напрямки досліджень

Розробка фізико-хімічних основ та технології синтезу вуглецевих нанопористих сорбентів, аерогелів, нанотрубок та нановолокон.

Розробка методів модифікування вуглецевих матеріалів з метою створення нанесених каталітичних систем та подальшої іммобілізації біологічно активних лігандів, вивчення їх каталітичної та біоспецифічної активності.

Створення нанокомпозитів «полімер/вуглецевий матеріал» і дослідження їх фізико-хімічних, фізико-механічних та медико-біологічних властивостей.

Теоретичне і експериментальне дослідження та розробка технологій спрямованого формування sр2-нанокластерів як активних центрів вуглецевих сорбентів, каталізаторів, електродних матеріалів, наповнювачів та біологічно активних засобів впливу на клітинному рівні.

 

Основні результати за останні роки

Оптимізовано технології отримання нанопоруватих (мікро та мезопористих) вуглецевих сорбентів та іонообмінних матеріалів на основі рослинної і синтетичної сировини.

Запропоновано методи хімічного модифікування вуглецевих матеріалів введенням структурних гетероатомів та поверхневих функціональних груп.

Відпрацьовано методи створення супрамолекулярних структур шляхом іммобілізації біологічно активних сполук на поверхні вуглецевих матеріалів.

Розроблено наукові засади одержання терморозширеного графіту та каталітичного CVD-синтезу вуглецевих нанотрубок з насичених, ненасичених і ароматичних вуглеводнів.

Створено нові класи нанокомпозитів «полімер/вуглецевий наноматеріал», здійснюється всебічне вивчення їх фізико-механічних і фізико-хімічних властивостей, біосумісність і біофункціональна здатність та пошук можливостей практичного використання.

Досліджено каталітичну (ензимоподібну) здатність вуглецевих наноматеріалів, їх специфічну сорбційну активність відносно фізіологічно активних речовин і метаболітів в моделях, що імітують біологічні середовища.

Вперше в Україні на НВП ТОВ «ТМСпецмаш» впроваджено повний технологічний цикл одержання терморозширеного графіту, виробів на його основі, зокрема фольги та ущільнюючих матеріалів, а також сорбенту для концентрування нафти і нафтопродуктів.

Створено пілотну установку синтеза вуглецевих нанотрубок і нановолокон в дослідно-промисловому масштабі (до 1,5 кг/день), яка включає інфраструктурне забезпечення газоподібними вуглеводнями, приготування та механохімічну активацію каталізатора.

Створено нові композити на основі медичних полімерів (фторопласт, поліпропілен тощо), армованих вуглецевими нанотрубками, що суттєво відрізняються від існуючих аналогів, які використовуються як протезні та шовні матеріали, поліпшеними експлуатаційними характеристиками та кращою біосумісністю.

На базі створених поліфункціональних вуглецевих наноматеріалів запропоновано мініатюризовані пристрої для здійснення експериментів з сорбційних або біосорбційних технологій з біологічними рідинами в екстремальних режимах (польові умови, гермооб’єкти, умови космічного польоту тощо).

 

Співробітники відділу

Картель Микола Тимофійович, академік НАН України, завідувач відділу

тел.:+380-44 423-80-58; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. This email address is being protected from spambots. You need JavaScript enabled to view it.

Алексєєва Тетяна Анатоліївна, кандидат фізико-математичних наук,

науковий співробітник, тел.: +380-44 424-71-52

Бакалінська Ольга Миколаївна, кандидат хімічних наук, старший науковий

співробітник, тел.:+380-44 422-96-02; +380-44 424-94-64;

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; This email address is being protected from spambots. You need JavaScript enabled to view it.

Бричка Алла Василівна, кандидат хімічних наук, науковий співробітник

тел.:+380-44 422-96-91; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; This email address is being protected from spambots. You need JavaScript enabled to view it.

Войтко Катерина Василівна, кандидат хімічних наук, молодший науковий

співробітник, тел.: +380-44 424-94-64;

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; This email address is being protected from spambots. You need JavaScript enabled to view it.

Гаврилюк Наталія Афанасіївна, молодший науковий співробітник

тел.:+380-44 4247152; +380-44 422-96-16;

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; This email address is being protected from spambots. You need JavaScript enabled to view it.

Семенцов Юрій Іванович, кандидат фізико-математичних наук,

старший науковий співробітник,

тел.:+380-44 4247152; +380-44 422-96-16;

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; This email address is being protected from spambots. You need JavaScript enabled to view it. ;

This email address is being protected from spambots. You need JavaScript enabled to view it. This email address is being protected from spambots. You need JavaScript enabled to view it.

Ушакова Людмила Миколаївна, молодший науковий співробітник,

тел.: +380-44 422-96-91; e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Аспірант

Чернюк Оксана Анатоліївна, тел.:+380-44 424-71-52; e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

Гребельна Юлія Валеріївна, тел.:+380-44 424-71-52

 

Співробітники лабораторії електрохімії вуглецевих та неорганічних наноматеріалів

Тарасенко Юрій Олександрович, доктор хімічних наук,

провідний науковий співробітник,

тел.: +380-44-422-96-02; е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Журавський Сергій Вікторович, кандидат хімічних наук, молодший науковий співробітник

тел.: +380-44-422-96-82; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Каленюк Ганна Олексіївна, молодший науковий співробітник

тел.: +380-44-422-96-02; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. This email address is being protected from spambots. You need JavaScript enabled to view it.

Кононенко Валентина Яківна, інженер,

тел.: +380-44-424-11-35

Куксенко Сергій Петрович, кандидат хімічних наук, старший науковий

співробітник, тел.: +380-44-422-96-02; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Куць Володимир Сергійович, кандидат фізико-математичних наук,

старший науковий співробітник,

тел.: +380-44-423-80-59; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; This email address is being protected from spambots. You need JavaScript enabled to view it. This email address is being protected from spambots. You need JavaScript enabled to view it.

Шевчук Олена Миколаївна, провідний інженер,

тел.:+380-44 4247152; +380-44 4229616;

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.  

Чернюк Оксана Анатоліївна, провідний інженер,

тел.:+380-44 424-71-52 e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

 

 

Співробітники лабораторії кінетики та механізмів хімічних перетворень на

поверхні твердих тіл

Кулик Тетяна Володимирівна, кандидат хімічних наук, завідувач лабораторії,

тел.: + 380-44 422-96-76; е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Азізова Ліана Решитівна, кандидат хімічних наук, молодший науковий співробітник,

тел.: + 380-44 422 96 76; е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Галиш Віта Василівна, кандидат хімічних наук, науковий

співробітник, тел.:+380-44 422-96-82

Настасієнко Наталія Сергіївна, кандидат хімічних наук, молодший науковий співробітник,

тел.: + 380-44 422-96-76

Ніколайчук Аліна Анатоліївна, молодший науковий співробітник

тел.:+380-44 4229682; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; This email address is being protected from spambots. You need JavaScript enabled to view it.

Паляниця Борис Борисович, молодший науковий співробітник,

тел.: + 380-44 422-96-76; е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Терець Марія Іванівна, кандидат хімічних наук, молодший науковий співробітник,

тел.:+380-44 422-96-76; е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Трофименко Світлана Іванівна, молодший науковий співробітник.

 тел.: + 380-44 422-96-44; е-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Публікації останніх років

1. S.V. Zhuravsky, M.T. Kartel, Yu.O. Tarasenko, S. Villar-Rodil, G. Dobos, A. Toth, J. Tuscon, K. Laszlo. N-containing carbons from styrene-divinylbenzene copolymer by urea treatment // Appl. Surf. Sci. – 2012. –V.258, N7. – P.2410–2415.

2. Е.А. Ковальская, Н.Т. Картель, Г.П. Приходько, Ю.И. Семенцов. Физико-химические основы методов очистки углеродных нанотрубок (обзор) // Химия, физика и технология поверхности. – 2012. – Т.3, №1. – С.20–44.

3. Є.О. Ковальська, Ю.І. Семенцов, М.Т. Картель, Г.П. Приходько. Синтез каталізаторів росту вуглецевих нанотрубок та тестування їхньої ефективності // Хімія, фізика та технологія поверхні. – 2012. – Т.3, №3. – С.335–340.

4. Н.Т. Картель, Л.В. Иванов, О.А. Нардид, Я.О. Черкашина, А.В. Козлов, С.В. Репина. Оценка действия углеродных нанотрубок на митохондриальную активность клеток тканей различных органов методом спиновых зондов // Доповіді НАН України. – 2012. – №3. – С.138–144.

5. К.В. Войтко, О.М. Бакалінська, Д.Б. Наседкін, Б.Б. Паляниця, Ю.В. Плюто, М.Т. Картель . Уреазоподібні властивості нанорозмірних вуглецевих матеріалів // Наукові записки НаУКМА. Хімічні науки і технології. – 2012. – Т. 131. – С.3–11.

6. Л.В. Иванов, Н.Т. Картель, О.А. Нардид. Детектирование взаимодействия углеродных нанотрубок с липосомами методом спиновых зондов // Сб. Поверхность. – 2012. – Вып. 4(19). – С.301–305.

7. Л.В. Иванов, Н.Т. Картель, М.Й. Крамар, Н.Д. Колбун. Комбинированное влияние углеродных нанотрубок и КВЧ-излучения на сперматозоиды мужчин в норме и патологии // Сб. Поверхность. – 2012. – Вып. 4(19). – С.316–327.

8. Ю.І. Семенцов, Г.П. Приходько, М.Т. Картель, С.М. Махно, Ю.Є. Грабовський, О.М. Алексєєв, Т.М. Пінчук-Ругаль. Композити поліпропілен-вуглецеві нанотрубки: структурні особливості, фізико-хімічні властивості // Сб. Поверхность. – 2012. – Вып. 4(19). – С.203–212.

9. О.М. Гаркуша, С.М. Махно, Г.П. Приходько, Ю.І. Семенцов, М.Т. Картель. Структурні особливості та властивості полімерних нанокомпозитів при низьких концентраціях наповнювача // Хімія, фізика та технологія поверхні. – 2011. – Т.1, №1. – С.103–110.

10. M.T. Kartel, L.V. Ivanov, S.N. Kovalenko, V.P. Tereschenko. Carbon nanotubes: biorisks and biodefence // In: Biodefence. NATO Science for Peace and Security Series A: Chemistry and Biology / Eds. S.Mikhalovsky and A.Khajibaev. – Springer Science+Business Media B.V., 2011. – P.11–22.

11. Yu. Sementsov, G. Prikhod’ko, M. Kartel, M. Tsebrenko, T. Aleksyeyeva, N. Ulyanchych. Carbon nanotubes filled composite materials // In.: Carbon Nanomaterials in Clean Energy Hydrogen Systems – II. NATO Science for Peace and Security Series C: Environmental Security 2. –Springer Science+Business Media B.V., 2011. – P.183–195.

12. Н.Т. Картель. Химические основы получения и особенности наноструктуры пор синтетических активных углей // В кн.: Адсорбция, адсорбенты и адсорбционные процессы в нанопористых материалах. – Москва: Граница, 2011. – С.381–405.

13. Ю.В. Савельев, Н.Т. Картель. Синтез и свойства блочных и пенных композитов «полиуретан/нанопористый углерод» // В кн.: Наноматериалы и нанокомпозиты в медицине, биологии, экологии / Под ред. А.П. Шпака, В.Ф. Чехуна. – Киев: Наукова думка, 2011. – С.140–170.

14. S.R. Sandeman, V.M. Gun’ko, O.M.Bakalinska, C.A. Howell, Yi. Zheng, M.T. Kartel, G.J. Phillips, S.V. Mikhalovsky. Adsorption of anionic and cationic dyes by activated carbons, PVA hydrogels and PVA/AC composite // J. Colloid Interface Sci. – 2011. – V. 358, N2. – P.582–592.

15. K.V. Voitko, R.L.D. Whitby, V.M. Gun’ko, O.M. Bakalinska, M.T. Kartel, K. Laszlo, A.B. Cundy, S.V. Mikhalovsky. Morphological and chemical features of nano and macroscale carbons affecting hydrogen peroxide decomposition in aqueous media // J. Colloid Interf. Sci. – 2011. – V. 361. – P. 29–136.

16. S.Ya. Brichka, I.B. Yanchuk, A.A. Konchits, S.P. Kolesnik, A.V. Efanov, A.V. Brichka, N.T. Kartel. Decoration of carbon nanotubes with cerium (IV) oxide // Chemistry, Physics and Technology of Surface. – 2011. – V.2, N1. – P.34–40.

17. M.T. Kartel, V.P. Chernykh, L.V. Ivanov, E.A. Gordienko, S.N. Kovalenko, Yu.I. Gubin, O.A. Nardid, E.I. Smolyaniniva. Mechanisms of the cytotoxicity of carbon nanotubes // Chemistry, Physics and Technology of Surface. - 2011. – V.2, N2. – P.182–189.

18. N.M. Rezanova, M.T. Kartel, Yu.I. Sementsov, G.P. Prikhod’ko, I.A. Melnik, M.V. Tsebrenko. Rheological properties of molten mixtures polypropylene/co-polyamide/CNT // Chemistry, Physics and Technology of Surface. – 2011. – V.2, N4. – P.451–455.

19. М.Л. Пятковский, Ю.І. Семенцов, Г.П. Приходько, М.Т. Картель. Природний графіт. Хімічне та електрохімічне очищення // Хімічна промисловість України. – 2011. – №6 (107). – С.17–23.

20. М. Картель, В. Лобанов, М. Гороховатская Курс фізичної хімії (лекції, лабораторний практикум та задачі).- Київ: Інтерсервіс, 2011. – 386 с.

21. В.П. Терещенко, Н.Т. Картель. Медико-биологические эффекты наночастиц: реалии и прогнозы. - Киев: Наукова думка, 2010. – 240 с.

22. Е.А. Ковальская, С.Я. Бричка, Н.Т. Картель, И.Б. Янчук, В. Матолин, М. Ворохта. Влияние нековалентного модифицирования на структурные характеристики многослойных углеродных нанотрубок // Cб. Поверхность. –2010. – Вып. 2 (17). – С.205–213.

 

 

Department of Composite Materials

 dep13

 

Head of Department

Gorelov Borys M.

Doctor of Sciences (Physics & Mathematics)

 

Теlеphоne: + 380 44 424-11-96

Fax: + 380 44 424-35-67

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Department staff is 14 co-workers including 1 DSc, 8 PhD, and 1 PhD student.  The Department includes Laboratory of Oxide Nanocomposites (Head of Lab. PhD in Chem. M.V. Borysenko). Analytical Laboratory for Testing Corrosion Resistance of Materials (Head of Lab, PhD in Chem. T.V. Cherniavska) operates at the Department. From 1986, the Department researchers have published more than 50 scientific papers and obtained 17 patents for invention; 1 doctor and 1 candidate dissertations were defended.

 

Directions of investigations

Physically-chemical mechanisms of interactions in the interface of nanocomposites and nanomaterials:- atomic bonds and physical phenomena in the interface area.

Influence of external fields and corrosive media on the physical properties of nanocomposites and nanomaterials.

Ways of expansion of the functionality of nanocomposites and nanomaterials.

Development and creation of stable reinforced functional and constructional polymer composite materials.

 

Main results for the recent years

Rise of thermal stability of unsaturated polyester resin composites with SiO2- nanoparticles realizes at low filler content and its mechanism consists in a fastening of polymer chains by ester carbonyl group with particle’s active surface sites.

In composites of unsaturated polyester resin with micro- and nanosilica fillers the thermal stability of material with any concentration of micro filler depends on the nanoparticle content and the thermal stability enhancement accompanies a reduction in the ultimate strength.

In composites of unsaturated orthophthalic polyester resin with SiO2- nanoparticles the origin of chemical bond on the nanoparticle-polymer interface defines a dielectrical permittivity behavior. Electron density growth on the particle surface due to formation of chemical bonds between atoms of macromolecule and surface sites results in a varying of chain conformation and a diminish of charge density in the polymer-nanopore interface.

Concentration effect of silica nanoparticles in polyester resin composites reveals in: the nonmonotonic thermal destruction of polymer chains when that of styrene cross-links a smoothly reduces; the nonmonotonic reduction of polarity of all macromolecule atomic bonds; the nonmonotonic behavior of dielectrical permittivity, positronium lifetime nanopore content. In the epoxy- nanosilica composites a rise of filler content leads to nonmonotonic behavior of swelling and strength properties.

Waffle structures with load-bearing framework which have the high mechanical parameters and slight adsorption of electromagnetic emission were developed and created.

 

Department staff

Gorelov Borys М., DSc, Head of Department,

tеl.:+38 (044) 424 11 96; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Garashchenko Іvan І.,leading engineer,

tеl.:+38 (044) 422 96 45; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Grechko Миkola P., leading engineer,

tеl.:+38 (044) 422 96 61

Sigarova Nadia V., engineer,

tеl.:+38 (044) 422 96 51; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Starokadomskiy Dmytro L., PhD, Research Associate,

tеl.: 4-27; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Тkachenko Оlexander О.,leading engineer,

tеl.: 3-90

 

Postgraduate student

Sigarova Nadia V., engineer,

tеl.:+38 (044) 422 96 51; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Laboratory of Oxide Nanocomposites staff

Borysenko Mykola V., PhD, Head of laboratory,

tel.: +38 (044) 4229672; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Bogatyrov Viktor M., PhD, Senior Researcher,

tel.:+38 (044) 4229672; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Galaburda Mariya V., PhD, Research Associate,

tel.:+38 (044) 4229672; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Gornikov Yuri I., leading engineer,

tel.:+38 (044) 4249470; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Oranska Olena I., PhD, Senior Researcher,

tel.:+38 (044) 4249470; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Sulym Iryna Ya., PhD, Senior Researcher,

tel.:+38 (044) 4229672; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Cherniavska Tetiana V., PhD, Research Associate,

tel.:+38 (044) 4249455; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Recent publications

1. B.M. Gorelov, O.I. Polovina, A.M. Gorb, S. Dacko, M. Kostrzewa. Ingram A. Fumed silica concentration effect on structure and dielectrical properties of a styrene-cross linked unsaturated polyester resin // J. Appl. Phys. – 2012. – V.112. 094321.

2. D.L. Starokadomsky. About Possibilities of strengthening of epoxypolymer composites by modificated brick powder // Am. J. Polymer Science. – 2012. – V.2, N 5. – P.109-114.

3. B.M. Gorelov, O.I. Polovina, A.M. Gorb, Z. Czapla, S. Dacko. Studying mechanical, acoustical and dielectric properties of SiO2-filled polyester resin nanocomposites // Functional Materials. – 2012. – V.19, N 4. – P.493-497.

4. Yu.A. Shevlyakov, A.G. Girchenko, B.M. Gorelov, V.N. Mischenko. Effect of moisture adsorption and surface state on conductivity and strength of glass fibre reinforced composites // Chemistry, Physics and Technology of Surface. - 2012. - V.3, N 1. – P.94-101 (in Ukrainian).

5. N.V. Poltoratska, B.M. Gorelov, О.О. Tkachenko. Nonmonotonic thermal destruction of polyester resin-micro- and nanosilica composites // Voprosy Khimii and Khimicheskoy Tehnologii. – 2012, N 5. – P.94-98 (in Ukrainian).

6. А.I. Casian, B.М. Gorelov, I.V. Dubrovin. Modern art and perspectives of thermoelectricity in organic materials // Тhermoelectricity. - 2012. – N 3. – С. 7-17.

7. B.M. Gorelov, O.I. Polovina, A.M. Gorb, А.P. Оnanko. Меchanical parameters of unsaturated polyester resin // New technologies. – 2012. – N 2– 3 (36– 37). – P.15 – 20 (in Russian).

8. D.L. Starokadomskiy. Swelling as an indicator of structural changes in heat-treated silica- filled epoxypolymer composites // Journal of Materials Science and Engineering. – 2011. - V.1, N 3. - А1. - P.436-443.

9. B.M. Gorelov. Effect of oxide fillers on thermal destruction of unsaturated polyester resin / Chemistry, Physics and Technology of Surface. – 2011. V.2, N 2. –P.201-212 (in Russian).

10. A.M. Gorb, B.M. Gorelov, С.В. Valytska, O.I. Polovina. Effect of nanosized silicon oxide on acoustic, thermal and mechanical properties of unsaturated polyester resin // Visnyk of КNU. Series of Phys.- Math. Sciences. – 2011. –N 4. – P.295–302 (in Russian).

11. B.M. Gorelov,O.V. Kotenok, S.N. Makhno, V.A. Sidorchuk, S.V. Khalameida, V.A. Zazhigalov. Structure and optical and dielectric properties of barium titanate nanoparticles obtained by the mechanochemical method / Technical Physics. - 2011. -V. 56, N1. – P. 83-91

12. A.G. Girchenko, B.M. Gorelov, S.P. Malashenkov, V.N. Mischenko, D.L. Starokadomskiy, Yu.A. Shevlyakov. Enhancement of functionality of polymeric composite materials // Sb. Poverhnost – 2011. – Iss. 3(18). – P.246-261 (in Russian).

13. A.G. Girchenko, М.P. Grechko, G.E. Pavlyk, V.О. Pokrovskiy. Enclosure sorbed boom for localization of oil product spots. Ukrainian Patent for useful model, 25.05.2012, N 69914.

14. A.G. Girchenko, М.P. Grechko, G.E. Pavlyk, V.О. Pokrovskiy. Enclosure sorbed boom for localization of oil product spots. Ukrainian Patent for useful model, 25.05.2012, N 70040.

15. A.G. Girchenko, Yu.A. Shevlyakov, P.P. Skurskiy, М.P. Grechko, I.І. Garashchenko. Panel / Ukrainian Patent for useful model N 56423, 01.2011.

16. A.G. Girchenko, Yu.A. Shevlyakov, P.P. Skurskiy, М.P. Grechko, I.І. Garashchenko. Panel / Ukrainian Patent for useful model N 56424, 10.01.2011.

 

 

Department of Theoretical and Experimental Physics

 rozemb dep

 

Head of Department

Rozenbaum Victor M.

Doctor of Sciences

(Physics and Mathematics),

Professor

 

Telephone: + 380 44 422-96-19

Fax: + 380 44 424-35-67

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

upper row: PhD V.I. Kanevskii, Prof. V. М. Rozenbaum

 lower row:  PhD О.I. Gichan, PhD Т.Е. Korochkova

 

Department staff is 10 co-workers including 2 DScs and 5 PhDs. From 1986, the Department researchers have published 4 books, more than 360 scientific papers; 2 doctor and 6 candidate dissertations were defended.

 

Directions of investigations

Theoretical investigation of the nonequilibrium processes at the electrode-electrolyte phase interface which are induced by dynamic instabilities. Establishment of conditions to control the nonlinear dynamics of such systems.

Simulation of light scattering on dielectric resonators and multilayer carbon nanotubes. 

Theoretical and mathematical physics of diffusion processes near the phase interface, controlled transport at nanoscale, operating mechanisms of Brownian motors.

 

Main results for the recent years

Occurrence conditions for Hopf instabilities, saddle-node bifurcations, and homoclinic instabilities have been established for a model electrocatalytic process with potential-depending adsorption/desorption of electroactive particles which is preceded by a chemical reaction in the Nernst diffusion layer on spherical, cylindrical, and plane electrode surfaces.

Approximating the scattering surface by a two-dimensional Weierstrass function within the framework of the Kirchhoff method, the average light scattering coefficient for a fractal surface has been calculated. As found, the scattering pattern substantially changes if boundary conditions are taken into account: new peaks appear, with their intensity and shape depending on the incidence angle.

A novel mechanism has been established for the occurrence of directed motion of a charged nanoparticle along a polar substrate; it arises from the fluctuations of a biased external force having a zero mean value. As shown, a temperature dependence of the particle velocity is nonmonotonic, with the maximum determined by the action region of the near-surface symmetric periodic electrostatic potential.

A number of new analytical models for Brownian motors have been suggested and necessary conditions for their high efficiency have been formulated: 1) adiabaticity of the temporal change in the potential profile (adiabatically slow or adiabatically fast); 2) the shift of the potential extrema (continuous or jump-like); 3) an efficient mechanism which rectifies nonequilibrium fluctuations at large (exceeding the thermal energy) amplitudes of the potential profile and (in the adiabatically fast mode) a certain asymmetrical shape of the profile. The results obtained provide an insight into the regularities of energy conversions at the nanoscale and in the nonequilibrium processes near the phase interface; they enable design of practically useful nanodevices.

It has been found that photoinduced dichotomic fluctuations of the electronic density distribution in an extended molecule placed in the electrostatic periodic potential of a polar substrate cause the directed motion of an ensemble of variously oriented molecules provided symmetric molecular electronic density distributions and the asymmetric substrate; on the contrary, the ensemble diffuses under the same conditions if the molecules have asymmetric electronic density distributions and the substrate is symmetric.

 

Department staff

Rozenbaum Victor M., DSc, Head of Department,

tel.:+38 (044) 4229619; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Gichan Olga I., PhD, Senior Researcher,

tel.:+38 (044) 4229697; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. This email address is being protected from spambots. You need JavaScript enabled to view it.

Gromovoy Taras Yu., PhD, Senior Researcher,

tel.: +38 (044) 4249456; e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it. This email address is being protected from spambots. You need JavaScript enabled to view it.

Kanevskii Vasilii I., PhD, Research Associate,

tel.:+38 (044) 4229697; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Korochkova Taisiya E., PhD, Senior Researcher,

tel.:+38 (044) 4229619; e- mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Laguta Valentin N., engineer,

tel.: 097 5604930; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Mischanchuk Aleksandr V., leading engineer,

tel.: +38 (044) 2393316; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Moshkivska Nadezhda M., leading engineer,

tel.: +38 (044) 4249451; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Pokrovskiy Valeriy A., DSc, Head of Laboratory,

tel.: 380 44 424-94-62, e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it. This email address is being protected from spambots. You need JavaScript enabled to view it.

Severinovska Olga V., PhD, Senior Researcher,

tel.: +38 (044) 4249456; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.  

 

Recent Publications

1. V.I. Kanevskiy, V.M. Rozenbaum. Light scattering by cylindrical nanoparticles: limits of applicability of the Rayleigh–Gans–Debye approximation // Optics and Spectroscopy. – 2014. – V. 117, N 2. – P. 304-307.

2. T.E. Korochkova, V.А. Mashira, N.G. Shkoda, V.M. Rozenbaum. Molecular pump functioning due to fluctuations of intramembrane potential // Eastern-European Journal of Enterprise Technologies. – 2014. – N 3/6(69). – P. 31-36.

3. V.V. Pototskaya, O.I. Gichan. Role of ohmic losses in appearance of dynamic instabilities in model electrochemical system with cylindrical electrode under potentiostatic conditions // Russ. J. Electrochem. – 2014. – V. 50, N11. – P. 1123-1134.

4. O.I. Gichan, V.V. Pototskaya. Bulk concentration and dynamic stability of a model electrochemical system with a preceding chemical reaction // Electrochim. Acta. – 2013. – V. 112. – Р. 957-966.

5. V.M. Rozenbaum, I.V. Shapochkina, T.E. Korochkova Adiabatic Brownian ratchets with the inclusion of inertia. // JETP Letters. – 2013. – V. 98, № 9. – P. 568-572.

6. M.L. Dekhtyar, V.M. Rozenbaum. Symmetry interplay in Brownian photomotors: from a single-molecule device to ensemble transport // J. Chem. Phys. – 2012. – V. 137, N 12. – P. 24306-1-6.

7 V.V. Pototskaya, O.I. Gichan. On the stability of a model electrocatalytic process with the Frumkin adsorption isotherm on a spherical electrode // Russ. J. Electrochem.. – 2012. – V. 48, N 2. – P. 171-180.

8. V.M. Rozenbaum, T.Ye. Korochkova, A.A. Chernova, M.L. Dekhtyar. Brownian motor with competing spatial and temporal asymmetry of potential energy // Phys. Rev. E. – 2011. – V. 83, N 5. – P.051120-1-10.

9. V.M. Rozenbaum Mechanical motion in nonequilibrium nanosystems / “Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications” by Eds. A. P. Shpak and P. P. Gorbyk // Springer: London, 2009. – P.35–44.

10. V.M. Rozenbaum, А.А. Chernova. Near-surface Brownian motor with synchronously fluctuating symmetric potential and applied force // Surface Science. – 2009. – V. 603, N 22. – P.3297–3300.

 

 

Лабораторія модифікування поверхні оксидів

 

 

Завідувач лабораторії

Воронін Євгеній Пилипович

доктор хімічних наук,
старший науковий співробітник

Телефон: + 380 44 424-94-63 
Факс: + 380 44 424-35-67 
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;
          This email address is being protected from spambots. You need JavaScript enabled to view it.

 

В лабораторії працює 5 спеціалістів, серед них 1 доктор та 3 кандидати наук. Співробітниками підрозділу опубліковано окремі глави в 4 колективних монографіях, 152 наукові статті, отримано 49 авторських свідоцтв та патентів на винаходи, захищено 1 докторську та 5 кандидатських дисертацій.

 

Напрямки досліджень

Розробка наукових основ газофазних способів адсорбційного, хімічного і полімеризаційного модифікування нанорозмірного кремнезему нелеткими низько- та високомолекулярними органічними сполуками (у тому числі біологічно активними) в умовах псевдозрідженого стану та механічної активації, геометричне модифікування нанокремнезему шляхом механообробки. Вивчення впливу передадсорбції органічних молекул на взаємодію кремнійорганічних сполук з поверхнею дисперсного кремнезему. Комбіноване хімічно-адсорбційне модифікування дисперсних оксидів різної дисперсності метакрилатмісткими олігомерами та кремнійорганічними сполуками з метою створення гібридних наповнювачів для полімерних систем, у тому числі медичного призначення.

Проведення досліджень, спрямованих на розширення сфери застосування препарату сорбційно-детоксикаційної дії "Силікс". Розробка нових лікарських форм ентеросорбенту "Силікс" з використанням механічної дії на дисперсії нанокремнезему в різноманітних середовищах. Створення комбінованих препаратів у формі нанорозмірних контейнерів типу "ядро–оболонка" шляхом послідовного адсорбційного модифікування нанокремнезему біологічно активними сполуками і полімерами.

 

Основні результати за останні роки

Розроблено новий ефективний спосіб газофазного сольвато-стимульованого адсорбційного модифікування нанорозмірного кремнезему полімерами та нелеткими органічними сполуками в умовах псевдозрідження в атмосфері сольватанту, який дозволяє досягати заданого ступеня покриття поверхні і практично повністю зберегти його початкову дисперсність.

Розроблено лабораторну технологію одержання нанорозмірного кремнезему з високою насипною густиною (300-400 г/дм3) "Денсил" шляхом геометричного модифікування нанокремнезему А-300 з використанням механоактивації. Оформлено технічні умови, тимчасовий технологічний регламент та висновок державної санітарно-епідеміологічної експертизи на геометрично модифікований нанокремнезем.

Встановлено, що механоактивація гідрофобного нанокремнезему, незважаючи на відсутність на його поверхні вільних силанольних груп, приводить до зростання насипної густини та зниження загущуючої здатності наповнювача. Присутність у газовій фазі парів води або етанолу практично не впливає на процес геометричного модифікування гідрофобного нанокремнезему.

Розроблено і оптимізовано лабораторну технологію газофазного механосорбційного модифікування нанорозмірного кремнезему сульфатами цинку, міді і срібла, а також синтезу на основі одержаних матеріалів нанокомпозитів Ag-SiO2, CuO-SiO2 та ZnO-SiO2. Показано, що солі в одержаних нанокомпозитах знаходяться у вигляді моношару високогідратованих іонів на поверхні кремнезему, а металічне срібло та оксиди міді і цинку утворюють окремі структури розміром від 15 до 25 нм.

Шляхом механосорбційного модифікування нанорозмірного кремнезему амінокислотами (гістидином, гліцином, лізином і триптофаном) одержано і охарактеризовано біонанокомпозити, що є перспективними аплікаційними сорбентами для медицини. Встановлено утворення моношарового покриття з амінокислот на поверхні кремнезему.

 

Співробітники лабораторії

Воронін Євгеній Пилипович, завідувач лабораторії, доктор хімічних наук,

тел. + 38 (044) 424-94-63, факс.+ 38 (044) 424-35-67,

е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. This email address is being protected from spambots. You need JavaScript enabled to view it.

Пахлов Євген Михайлович, кандидат хімічних наук, старший науковий

співробітник, тел. +38 (044) 422-96-27,  е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Носач Людмила Вікторівна, кандидат хімічних наук, старший науковий

співробітник, тел. + 38 (044) 424-94-63, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Гузенко Наталія Вікторівна, кандидат хімічних наук, старший науковий

співробітник, тел. + 38 (044) 424-94-63, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Габчак Олександра Леонідівна, молодший науковий співробітник,

тел. + 38 (044) 424-94-63, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Публікації останніх років

 

1. M.L. Perrine, P.JR. Kamarchik, V.V. Brei, O.O. Chuiko, E.P. Voronin. Mineral-filled coating having enhanced abrasion resistance and methods for using same // US Patent Application 20030194549 A1. – Опубл. 2009.

2. А.П. Василенко, Н.В. Гузенко, М.Л. Малышева, Е.Ф. Воронин. Влияние поливинилпирролидона и полиоксиэтилена на адсорбцию белков на поверхности нанокремнезёма // Сб. Химия, физика и технология поверхности – 2009. – Вып. 15 – С.111–118.

3. E.F. Voronin, L. V. Nosach, N.V. Guzenko, E.M. Pakhlov, О.L. Gabchak. Adsorption modification of nanosilica with non-volatile organic compounds in fluidized state. – Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications / eds. A.P. Shpak, P.P. Gorbyk. - London: Springer, 2009. – Р.169-178.

4. Е.Ф. Воронин, Л.В. Носач, В.М. Гунько. Газофазное сольвато-стимулированное адсорбционное модифицирование наноразмерного кремнезёма нелетучими органическими соединениями // Сб. Поверхность. – 2010. – Вып. 2 (17). – С.221–243.

5. Е.Ф. Воронин, Л.В. Носач, Е.И. Оранская, Н.В Борисенко., И.С. Чекман. Стабилизация высокодисперсного состояния CuSO4 путём образования монослоя на поверхности наночастиц кремнезёма в условиях механоактивации // Доповіді НАН України. – 2010. – № 10. – С.109–113.

6. V.M. Gun’ko, E.F. Voronin, L.V. Nosach, V.V. Turov, Z. Wang, A.P. Vasilenko, R. Leboda, J. Skubiszewska-Zięba, W. Janusz, S.V. Mikhalovsky. Structural, textural and adsorption characteristics of nanosilica mechanochemically activated in different media // J Colloid Interf. Sci. – 2011. – V.355. – P.300–311.

7. А.Л. Габчак, И.И. Геращенко, Л.В. Носач, Е.Ф. Воронин, А.Н. Чепляка, Т.П. Осолодченко. Структура, белоксорбирующие и антимикробные свойства композиций нанодисперсного кремнезёма с 1-(β-оксиэтил)-3-метил-5-нитроимидазолом // Хімія, фізика і технологія поверхні. – 2011. – Т.2, №1. – С.86-92.

8. Д.С. Савченко, І.С. Чекман, Є.П. Воронін, Л.В. Носач. Спосіб одержання нанокомпозиту високодисперсного кремнезему-кластерів срібла з протимікробними та сорбційно-детоксикаційними властивостями // Патент України на корисну модель №69526 від 25.04.2012.

9. Л.В. Носач. Порівняння ефективності модифікування нанокремнезему сахаридами в рідкому та газовому дисперсійних середовищах // Поверхность. – 2014. – Вип. 6 (21). – С.83-95.

10. Е.В. Сосникова, Н.О. Плауде, Е.Ф. Воронин, Л.В. Носач, Е.М. Пахлов, В.М. Гунько, В.А. Покровский. Исследование эффективности наноразмерных кристаллизующих реагентов AgI/SiO2 // Вопросы физики облаков. Атмосферные аэрозоли, активные воздействия. Сб. статей памяти Н.О.Плауде. – Обнинск: ФГБУ "ВНИИГМИ-МЦД", 2015. – С.323-330.

11. І. Чекман, З. Ульберг, А. Руденко, С. Білоус, Є. Воронін. Підтримка стану здоров"я людей після Чорнобильської трагедії із застосуванням нанопрепаратів // The scientific proccedings of the International network AgroBioNet "Biodiversity after Chernobyl Accident. Part. 1". – 2016. – Р. 51-54.

12. L.V. Karabanova, Yu.P. Gomza, S.D. Nesin, O.M. Bondaruk, E.P. Voronin, L.V. Nosach. Nanocomposites based on multicomponent polymer matrices and nanofiller densil for biomedical application // Nanophysics, Nanophotonics, Surface Studies and Applications. – Springer International Publishing. – 2016. – р.451-475. DOI 10.1007/978-3-319-30737-4_38

13. О.С. Куколевська, І.І. Геращенко, Є.М. Пахлов. Нанокомпозитні матеріали з регульованим вивільненням біоактивних речовин // Наукові записки НаУКМА. – Хімічні науки і технології. – 2016. – Т. 183. – С. 60-64.


 


 

Laboratory of Electrophysics of Nanomaterials

 mahn

 

Head of Laboratory

 Makhno Stanislav M.

PhD in Physics and Mathematics, Senior Researcher

 

Telephone: + 380 44 422-96-10

Fax: + 380 44 424-35-67

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

From left to right: PhD (Chem.), Junior Researcher Prokopenko S.L.; PhD (Phys.&Math.), Research Associate Mazurenko R.V.; leading engineer Gunya G.M.; PhD (Phys.& Math.), Head of Lab. Makhno S.M.

 

Laboratory staff is 6 co-workers including 4 PhDs. From 1986, the Laboratory researchers have published more than 60 scientific papers and obtained 3 patents for inventions; 4 candidate dissertations were defended.

 

Directions of investigations

  • electrophysics of nanostructural composites based on polymers, ferroelectric and substance with of metal-semiconductor, dielectric-superionik phase transitions etc;
  • interaction of electromagnetic radiation with heterogeneous, superdispersed and nanostructured systems;
  • effects of low-intensity electromagnetic radiation on the activity of the processes in biological systems;

 

Main results for the recent years

New nanocomposites have been developed dynamically controlled electrophysical characteristics interacting effectively with electromagnetic radiation high-frequency diapason: polychlorotrifluoroethylene, containing highly disperseoxides (SiO2, TiO2, SnO2, Al2O3) modified with substances having electron-ion conductivities (AgI, CuI, KH2PO4, Ag2S, CdS, CuS). Nanowires CdS with a diameter of 7 nm and a length of more than 200 nm and “core–shell” semiconductor nanocrystals was produced by the developed technique. The results can be the basis for a new conductive composite materials shielding and absorbing electromagnetic radiation, catalysts, etc.

Additional mechanisms of dissipation of electromagnetic energy in the microwave range of systems polymer-conductor have been shown to be connected with polarization effects arising due to interphase interaction of the components. An increase in the values of complex permittivity as well as an expansion of the diapason of their controlled changes is achieved by chemical modifying of surface of polymer with substances having electron-ion conductivities.

When examining the interaction between low-intensive electromagnetic radiation within the millimeter diapason and highly organized systems, a frequency-selective response of biosystems has been found. Stimulation of vital activity of yeast cells (Saccharomyces cerevisiae) of suspension was observed for frequencies 40, 47.5, 55, 62.5, 70 GHz and between the values of these frequencies was occurs inactivation of vital activity. Presence of high silica in yeast of suspensions can compensate inhibition of their metabolic processes and increase the bioavailability of nutrients was found.

In the frequency range 47-67 GHz was detected frequency-selective response of blood cell in vitro (including red blood cells), and enzymes. Probably increase blood antioxidant status and occurrence of radical and peroxide conditions is due to mechanisms that are implemented through primary type of catalytic reactions that occur in lipids on the cell surface.

The study of biophysical processes and mechanisms of low-intensity electromagnetic radiation and highly dispersed oxides makes it possible to design controls of vital processes of biological systems and provide system protection from exogenous exposure.

 

Laboratory staff

Makhno Stanislav M., PhD, Head of Laboratory,

tel.: + 38 (044) 422-96-10, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Gunya Grygoriy M. leading engineer,

tel.: + 38 (044) 422-96-10

Kotenok Olena V., engineer,

tel.: + 38 (044) 422-96-10

Lisova Oksana M., PhD, Researcher Associate,

tel: + 38 (044) 422-96-10, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Mazurenko Ruslana V., PhD, Research Associate,

tel:: + 38 (044) 422-96-10, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Prokopenko Sergiy L., PhD, Research Associate,

тел.: + 38 (044) 422-96-10, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Recent publications

  1. R.V. Mazurenko, S.M. Makhno, G.M. Gunya, P.P. Gorbyk. Effect of dispersion of copper-iodide particles on the electrical properties of composites based on polychlortrifluoroethylene // Metallofiz. Noveishie Tekhnol.–2016.– V 38, No. 5.–P.647—656 (in Ukrainian) DOI: 10.15407/mfint.38.05.0647.
  2. G.M. Bagatska, R.V. Mazurenko, S.M. Makhno, P.P. Gorbyk. Influence of dispersed copper iodide on the enzymatic activity of the yeast cells Saccharomyces cerevisiae // Chemistry, Physics and Technology of Surface. – 2016.–V.7, N3.–P. 354–360. (in Ukrainian).
  3. P.P. Gorbyk, R.V. Mazurenko, S.M. Makhno, M.V. Abramov, G.M. Gunya, O.A. Vasil’eva. Nanocomposite protective coating / Ukrainian Patent for useful model N 108505 from 25.07.2016.
  4. O.M. Lisova, A.N. Bagatskaya, S.N. Makhno, P.P. Gorbyk. The effect of low-intensity microwave electromagnetic radiation on vital functions of yeast cells in the medium of citric acid / Chemistry, Physics and Technology of Surface. – 2016.–V.7, N3.–P. 337–343 (in Ukrainian).
  5. R.V. Mazurenko, S.N. Makhno, G.M. Gunya, P.P. Gorbik. Electrophysical Properties of Nanocomposites on the Basis of Polychlorotrifluoroethylene and Magnesium Oxide Modified with Copper Iodide // Physics and chemistry of solid state.–2016.–V.17, N4.–P. 482–486 (in Ukrainian).
  6. S.M. Makhno, O.M. Lisova, G.M. Gunya, Yu.I. Sementsov, Yu.V. Grebelna, M.T. Kartel. The Properties of Synthesized Graphene and Polychlorotrifluoroethylene – Graphene systems // Physics and chemistry of solid state. – 2016. – V. 17, N 3.–P.421-425 (in Ukrainian).
  7. S. L. Prokopenko, G. M. Gunja, S. N. Makhno, P. P. Gorbyk. Synthesis and electrophysical properties of composite materials based on heterostructures CuS/CdS, Cu2S/CdS, Ag2S/CdS // J Nanostruct Chem –2014. –№4. – p. 103-108. DOI 10.1007/s40097-014-0120-3.
  8. S.N. Makhno. Electrophysical properties of polychlorotrifluoroethylene–copper oxide system // Chemistry, Physics and Technology of Surface. – 2014. – V.5, N1.–P. 23–29 (in Ukrainian).

 

Лабораторія електрохімії наноматеріалів

 

 

Завідувач лабораторії

Тарасенко Юрій Олександрович

доктор хімічних наук, професор

Телефон: +380-44 422-96-02 
Факс: +380-44 424-35-67 
Е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

В лабораторії працює 8 спеціалістів, серед них 1 доктор і 3 кандидати наук. Співробітниками підрозділу опубліковано понад 30 наукових статей.

 

Напрямки досліджень

Розробка фізико-хімічних основ синтезу композитних неорганічних наноматеріалів з модифікованою поверхнею і створення ефективних середовищ для їх функціонування.

 

Основні результати стосуються створення нових складів неводних електролітів і розробки сполук включення з такими хімічними потенціалами літію, які придатні для систем накопичення та зберігання електричної енергії.

Запропоновано концептуально нові кремній–вуглецеві матеріали з каркасно-впорядкованою структурою, що дозоляють суттєво збільшувати кількість можливих позицій для розміщення літію і ефективність (>99,99%) його зворотного введення–виведення.

Розроблені методики синтезу в сольових розплавах нанокристалічних композитів літійованих фосфатів заліза з вуглецем та модифікування їх іонами перехідних металів. Знайдені оптимальні умови їх отримання дозволяють суттєво покращити зворотність та стабільність електродних процесів.

Розроблені спеціальні домішки до апротонних електролітів, які сприяють формуванню стабільної межі поділу «електрод | електроліт».

 

Співробітники лабораторії електрохімії вуглецевих та неорганічних наноматеріалів

Тарасенко Юрій Олександрович, доктор хімічних наук,

провідний науковий співробітник,

тел.: +380-44-422-96-02; е-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

Журавський Сергій Вікторович, кандидат хімічних наук, молодший науковий співробітник

тел.: +380-44-422-96-82; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Каленюк Ганна Олексіївна, молодший науковий співробітник

тел.: +380-44-422-96-02; e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

Кононенко Валентина Яківна, інженер,

тел.: +380-44-424-11-35

Куксенко Сергій Петрович, кандидат хімічних наук, старший науковий

співробітник, тел.: +380-44-422-96-02; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Куць Володимир Сергійович, кандидат фізико-математичних наук,

старший науковий співробітник,

тел.: +380-44-423-80-59; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.   This email address is being protected from spambots. You need JavaScript enabled to view it.

Шевчук Олена Миколаївна, провідний інженер,

тел.:+380-44 4247152; +380-44 4229616;

e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

Чернюк Оксана Анатоліївна, провідний інженер,

тел.:+380-44 424-71-52 e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Публікації останніх років 

1. С.П. Куксенко. Алюминиевая фольга как анодный материал литий-ионных аккумуляторов: влияние состава электролита на параметры циклирования // Электрохимия. – 2013. – Т. 49, № 1. – С.73–82.

2. К.В. Войтко, Є.М. Дем’яненко, О.М. Бакалінська, Ю.О. Тарасенко, В.С. Куць, М.Т. Картель. Квантово-хімічне дослідження термодинамічних та кінетичних характеристик взаємодії гідроксильного радикала з графітоподібними площинами // Хімія, фізика та технологія поверхні. – 2013. – Т. 4, № 1. – С.3–13.

3. Э.В. Панов, С.М. Малеваный, Ю.А. Тарасенко, Н.Т. Картель. Синтез и свойства катодного материала – литированного фосфата железа – для литий-ионных аккумуляторов // Вісник Харківського національного університету. Хімія. – 2012. – Вип. 21 (44), №1026. – С.9–16.

4. С.П. Куксенко, В.С. Куць, Ю.А. Тарасенко, Н.Т. Картель. Электрохимические исследования и квантовохимические расчеты системы SinLim // Химия, физика и технология поверхности. – 2011. – Т. 2, № 3. – С.221–228.

5. С.П. Куксенко, И.О. Коваленко, Ю.А. Тарасенко, Н.Т. Картель. Нанокомпозит кремний–углерод для гибридных электродов литий-ионных аккумуляторов // Вопр. химии и хим. технологии. – 2011. – № 4(1). – С.299–303.

6. С.П. Куксенко, И.О. Коваленко. Нанопорошок кремния как активный материал гибридных электродов литий-ионных аккумуляторов // Ж. прикл. химии. – 2011. – Т. 84, № 7. – С.1107–1115.

7. S.V. Zhuravsky, M.T. Kartel, Yu.O. Tarasenko, S. Villar-Rodil, G. Dobos, A. Toth, J. Tuscon, K. Laszlo. N-containing carbons from styrene – divinylbenzene copolymer by urea treatment // Appl. Surfuce Sci. – 2011. – V.258, N 7. – Р.2410–2415.

8. С.П. Куксенко Кремниевые электроды литий-ионных аккумуляторов: пути улучшения параметров циклирования // Фундаментальные проблемы преобразования энергии в литиевых электрохимических системах / под ред. М.С. Плешакова. Новочеркасск: ЮРГТУ (НПИ), 2010. – С. 147–151.

9. Ю.А. Тарасенко, А.А. Каленюк, В.Е. Клименко, В.С. Куць. Адсорбционая система «полигидридсилоксан/ благородный металл» как триггер // Сб. Поверхность. – 2010. – Вып.2 (17). – С.129–145.

10. С.П. Куксенко, И.О. Коваленко. Получение композита кремний-графит для гибридного электрода литий-ионных аккумуляторов // Ж. прикл. химии. – 2010. – Т. 83, № 10. – С.1672-1676.

11. Куксенко С.П. Параметры циклирования графита марки MAG как анодного материала литий-ионных аккумуляторов // Ж. прикл. химии. – 2010. – Т. 83, № 4. – С.596–600.

12. С.П. Куксенко. Параметры циклирования кремниевых анодных материалов литий-ионных аккумуляторов // Ж. прикл. химии. – 2010. – Т. 83, № 4. – С.589-595.

13. С.П. Куксенко, И.О. Коваленко, Ю.А. Тарасенко, Н.Т. Картель. Формирование стабильной аморфной фазы в покрытом углеродом кремнии при глубоком электрохимическом литировании // Химия, физика и технология поверхности. – 2010. – Т. 1, № 1. – С.57–71.

14. В.Ф. Лапко, И.П. Герасимюк, В.С. Куць, Ю.А. Тарасенко. Активационные характеристики процесса разложения Н2О2 на палладий-углеродних катализаторах // Ж. физ. химии. – 2010. Т. 84, №6. – С.1043–1049.

15. Ю.А. Тарасенко, А.А. Каленюк, В.Е. Клименко. Электрохимические процессы в системах «активный уголь/ раствор соединения благородного металла» // Сб. Поверхность. – 2009. – Вып.1(16). – С.87–107.

16. Ю.А. Тарасенко, А.А. Каленюк, В.Е. Клименко, В.С. Куць Адсорбционно-электрохимическое формирование пространственных структур в системе «активный уголь/ благородный металл» // Вісник Харківського національного університету. Хімія. – 2009. – Вип.17 (40), №870. – С.226–239.

17. С.П. Куксенко, Ю.А. Тарасенко, И.О. Коваленко, Н.Т. Картель. Углеродное покрытие микро- и нанокремния: прогресс кремниевых анодных материалов для литий-ионных аккумуляторов // Сб. Химия, физика и технология поверхности. – 2009. – Вып. 15. – С.144–153.

 

 

Center for collective use of scientific instruments / equipment

Center for collective use of scientific instruments / equipment

 

Center for collective use of scientific instruments / equipment "Mass spectrometric complex with laser desorption/ionization MALDI-TOF Autoflex II LRF20" of NAS of Ukraine

 

According to the Order of the Presidium of NAS of Ukraine dated 18.02.05 №104, the Center for Collective Use of Scientific Instruments / Equipment "Mass spectrometric complex with laser desorption / ionization MALDI-TOF Autoflex II LRF20" of the National Academy of Sciences of Ukraine was established at Chuiko Institute of Surface Chemistry of NAS of Ukraine.

 

 

  

For users of the center

 

Center equipment:

 

 

Name of instrument / equipment

 

Main characteristics

Manufacturer, country, and year of manufacture

IMG 20210302 123914

Mass spectrometer Autoflex II LRF20

Time-of-flight mass spectrometer with matrix-assisted laser desorption / ionization (MALDI-TOF / TOF)

Bruker Daltonik GmbH, Germany, 2004

IMG 20210302 123954

HPLC Agilent 1100*

High performance liquid chromatograph for preparative chromatography

Agilent Technologies, Germany, 2004

 * the equipment is in the process of modernization / completion

 

Mass spectrometer Autoflex II LRF20

 

 

Mass spectrometric complex with laser desorption / ionization MALDI-TOF Autoflex II LRF20 is designed for analysis of ions in a wide range of m/z; it provides detailed and accurate information on the molecular weight of the analyte; it allows analyzing a wide range of molecules - from smaller molecules, such as lipids and peptides, to polymers and intact proteins exceeding 100 kDa; it is indispensable in the analysis of non-volatile macromolecular compounds (proteins, carbohydrates, oligonucleotides) and small molecules (secondary plant metabolites, phytohormones, etc.).

 

The main technical characteristics of the Instrument

Mass range:

~ 250 kDa (Linear Mode)

~ 6,000 Da (Reflectron Mode)

Resolution:

>  4,000 @ FWHM* (Linear Mode)

>  10,000 @ FWHM* (Reflectron Mode)

Ionization (±eV):

Matrix Assisted LASER Desorption/Ionization (MALDI) – 337 nm Nitrogen laser

Inlet Systems:

-384 Microtitre Plate/Target

-LASER: 337nm Nitrogen

Features:

-Delayed Extraction (DE))

-Post Source Decay (PSD)

Data System:

-Windows 2000 SP4

-Bruker Compass 1.0, FlexControl 2.2

-FlexAnalysis 2.2 and license

-GUI Integrated vacuum measurement and control unit

Predominant Uses:

-Characterization and identification of proteins by peptide mass mapping

-PSD and peptide sequencing

-Analysis of low molecular weight organic substances

*FWHM = full width at half height

 

HPLC Agilent 1100

 

The Agilent 1100 High Performance Liquid Chromatograph is used to analyze mostly polar non-volatile compounds. With the help of the device it is possible to determine different classes of biologically active substances: in particular, secondary plant metabolites (phenolic compounds, flavonoids, anthraquinones, saponins, etc.), phytohormones (auxins, gibberellins, abscisic acid and its derivatives, cytokinins, etc.), and other biologically active substances of plant origin (alkaloids, sesquiterpene lactones, etc.).

The main technical characteristics of the Instrument

Four-channel plunger pump (up to 400 bar) with flow rate of 0.001-10 ml/min (step 0.001 ml/min) with solvent compartment. Solvent supply adjustment step: 0.001 ml/min. The pH range of the eluent is 1…11.5. Plunger volume: 180 μl.

Vacuum degasser for 4 channels with a capacity of up to 10 ml / min.

Autosampler / Block of automatic sampling / (100 samples up to 2 ml) with the ability to add an internal standard, dilute the sample and perform derivatization. The possible volume of the sample is 0.1…100 μl. Input accuracy of 1% (relative standard error for the sample - 0.1 μl).

Column thermostat (temperature range from 10 °C below room temp. up to + 80 ° C (in steps of 1°). The thermostat holds 3 columns up to 30 cm long. Temperature maintenance accuracy ± 0.15ºC The thermostat is equipped with a device for recording and reading information stored on the identification modules of the columns.

Diode-matrix detector (1024 photodiodes) with a wavelength range of 190…950 nm (1 nm discreteness), with automatically variable programmable spectral width of the slit (from 1 to 16 nm.), including the in-process of chromatographic analysis, with a high pressure cuvette. The detector has an integrated holmium oxide filter to check the correct setting of wavelengths and is equipped with a system of warnings about the need for timely preventive replacement of the light source. Noise level during operation of the spectrophotometric detector is 0.6 × 10-5 units of optical density.

 

 

Terms of use of the Center's services

 

1. Researchers of institutions and organizations of the National Academy of Sciences of Ukraine who have the appropriate qualifications and experience on similar devices have the right to use the services of the Center.

2. Scientific organizations and institutions of the NAS of Ukraine that need to carry out the research at the Center, 1-2 months before the deadline submit to the head / responsible executive of the Center a standard application with a justification of scientific tasks and a description of the type and the class of compounds to be analyzed, indicate the number of samples.

3. The Customer and the Contractor enter into an agreement on carrying out works on the devices / equipment of the Center.

4. Provision (reimbursement) of consumables for a single cycle of work, sample preparation and depreciation costs are provided by customers.

5. For the convenience of collective use of devices/equipment and rational organization of working hours of the employees of the Center "Mass spectrometric complex with laser desorption / ionization MALDI-TOF Autoflex II LRF20", the following schedule of the Center is established: Tuesday - from 9.00 to 18.00 and Thursday from 9.00 to 17.00; lunch break - from 13.00 to 14.00. Customers can monitor the distribution of working time for scheduled research using the Center's instruments / equipment through an electronic calendar posted on the Center's website.

6. In the printed works presenting the results of research performed using the equipment of the Center “MALDI-TOF Autoflex II LRF20 Mass Spectrometric Complex with Laser Desorption / Ionization” Customers are obliged to refer to where and in what way the data were obtained, and generally to comply with copyright.

7. For customer institutions that are not subordinated to the National Academy of Sciences of Ukraine, the equipment of the Center “MALDI-TOF Autoflex II LRF20 Mass Spectrometric Complex with Laser Desorption / Ionization” may be provided on a commercial basis in accordance with the current legislation of Ukraine. Payment for consumables required for sample preparation and mass spectrometric analysis is determined with customers on a contractual basis.

8. Organizations and researchers who participate in the work and use the services of the Center are obliged to: comply with the Regulations of the Center "Mass spectrometric complex with laser desorption / ionization MALDI-TOF Autoflex II LRF20" of NAS of Ukraine; comply with the requirements of the head of the Center and his authorized persons on the organization of works and their safety.

 

 

Сalendar

 

 

Contacts

 

Head of the Center:

Volodymyr V. Turov, Deputy Director for Research, Corresponding Member of NAS of Ukraine, doctor of chemical sciences, professor

Tel.: +380 (44) 424 94 62, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Responsible executives:

Taras Yu. Gromovyi, PhD in chemistry, senior researcher, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;

Pavlo O. Kuzema, PhD in chemistry, senior researcher, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it. ;

Iryna V. Laguta, PhD in chemistry, senior researcher, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;

Nadiia M. Moshkivska, leading engineer, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;

Olga V. Severynovska, PhD in chemistry, senior researcher, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;

Tetiana V. Fesenko, PhD in chemistry, researcher, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Contact information:

Mailing address: 17 General Naumov Str., 03164 Kyiv, Ukraine

E-mail:

Tel./fax: +380 (44) 424 94 56 / fax +38(044) 424 35 67.

 

Contact us

Your message has been sent sucessfully

 

 

 

 

 

 

 

 

 

 

 

Контрольно–аналітична лабораторія випробувань корозійної стійкості матеріалів

В Інституті хімії поверхні ім. О.О. Чуйка НАН України при відділі хемосорбції створена неструктурна контрольно-аналітична лабораторія (наказ № 33 від 01.03.2013) з метою забезпечення науково-дослідних робіт якісними випробуваннями. Керівник лабораторії - к.х.н., наук. співр. Чернявська Т.В.

Основний напрям роботи - випробування корозійної стійкості матеріалів.

Співробітники лабораторії корозійної стійкості матеріалів біля камери циклічної корозії «Cyclic corrosion chamber» виробництва «Auto Technology».

Зліва направо: к.х.н., наук. співр. А.Г. Дяченко, к.х.н., наук. співр. Т.В. Чернявська (керівник лабораторії, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , tel. +380 44-424-94-55), пров. інж. Л.В. Петрусь.

 

Лабораторія атестована на підставі Закону України «Про метрологію та метрологічну діяльність», відповідає критеріям атестації вимірювальних лабораторій відповідно до Правил уповноваження та атестації у державній метрологічній системі.certificate

 

Перелік обладнання лабораторії

1. Камера сольового туману Auto Technology. Використовується для випробування корозійної стійкості покриття.

2. Камера циклічної корозії Auto Technology CCT-NC-30 Використовується для випробування корозійної стійкості покриття.

3. Камери вологості Q-panel. Використовується для випробування вологостійкості покриття.

4. Прилад для згинання панелей з металічними стрижнями різного діаметру (Elcometr). Випробування стійкості покриття до згинання. Визначення адгезії покриття.

5. Прилад для визначення ступеню дисперсності пігменту. Визначення розміру часток пігменту після диспергування.

6. Магнітні мішалки VS C-10. Використовується для перемішування фарб.

7. Повітряні мішалки. Використовується для перемішування фарб.

8. Піч електрична Despatch. Використовується для сушки нанесеного покриття.

 

Лабораторія нанохімії функціональних покриттів

 


 

Завідувач лабораторії

Плюто Юрій Володимирович,

кандидат хімічних наук

Телефон: (+380-44) 424-90-27

Факс: (+380-44) 424-35-67

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ,
  This email address is being protected from spambots. You need JavaScript enabled to view it.

 

В лабораторії працює 4 спеціалісти, серед них 1 кандидат наук. Співробітниками підрозділу опубліковано понад 70 наукових статей, отримано 2 патенти на винаходи, захищено 2 кандидатські дисертації.

 

Напрямки досліджень

- розробка методів синтезу тонких плівок, функціональних покриттів та нанорозмірних неорганічних наповнювачів (оксидних та вуглецевих) з хімічно модифікованою поверхнею;

- розробка нанохімічних рідкофазних та піролітичних методів синтезу тонких оксидних плівок, в тому числі. темплатно-структурованих, на поверхні твердих тіл;

- дослідження особливостей перебігу реакцій хімічного модифікування та утворення наночастинок в порах тонких оксидних плівок;

- створення захисних, антикорозійних та декоративних покриттів на поверхні неорганічних матеріалів, тонкоплівкових структурованих каталізаторів.

 

Практична направленість робіт пов’язана із розробкою функціональних покриттів різного призначення, зокрема при виконанні таких проектів.

6 Рамкова Програма Європейського Союзу (Нанотехнології та нанонауки, наукоємні багатофункціональні матеріали, нові виробничі процеси та обладнання). Проект NMP2-CT-2005-515762 “Re-engineering of natural stone production chain through knowledge based processes, eco-innovation and new organisational paradigms” (I-STONE). Розроблено захисне супергідрофобне покриття на поверхні мармуру та вапняку, яке полегшує їх очистку від пилу, фарби, побутових забруднень, а також захищає від негативного впливу атмосферних факторів. Проект завершено.

7 Рамкова Програма Європейського Союзу (Нанонауки, нанотехнології, матеріали та нові промислові технології). Проект NMP3-SL-2012-310436 “Production of coatings for new efficient and clean coal power plant materials” (POEMA). Розробляються захисні покриття на поверхні металічних конструкційних елементів енергетичного устаткування, що працює при високих температурах та агресивному середовищі продуктів згоряння сірковмісного вугілля. Проект виконується.

 

Основні результати за останні роки

Теоретично обґрунтована та експериментально перевірена можливість застосування адсорбційного методу для оцінки розмірів наноблоків терморозширеного графіту та кількості графенових шарів в них. Для синтезованих зразків терморозширеного графіту розмір наноблоків склав 20-40 нм, а кількість графенових шарів була в межах 50-100. Форма базальної поверхні наноблоків терморозширеного графіту в рамках запропонованих моделей не є критичною для визначення розміру наноблоків виходячи з величини питомої поверхні цього матеріалу.

Розроблено піролітичний метод синтезу вуглецевого покриття на поверхні осадженого та пірогенного Al2O3 шляхом адсорбції 4,4'- метиленбісфенілізоціанату (в молекулі якого є група R-N=С=О, здатна вступати у взаємодію з гідроксильними групами поверхні за рахунок розкриття зв’язків N=C) та піролізу. Зокрема, здійснено синтез наночастинок із структурою „ядро-оболонка” на основі пірогенного Al2O3 із середнім розміром частинок 5-8 нм та вуглецевим покриттям.

Досліджено взаємодію Cr(acac)3 і Mn(acac)3 з активними центрами на поверхні дисперсних SiO2 і Al2O3 та в об’ємі золь-гель плівок SiO2 і з’ясовано, яку участь в цьому процесі беруть поверхневі ОН- групи та координаційно-ненасичені іони Al3+, а також реакційноздатні групи ацетилацетонатних лігандів.

Вивчені особливості хімічної функціоналізації плівок SiO2 товщиною 100-200 нм, синтезованих темплатним і безтемплатним золь-гель методом на поверхні скла. Встановлена перспективність використання темплатно-структурованих плівок для створення функціональних покриттів. Вивчені окиснювально-відновлювальні перетворення наночастинок Ag в темплатно-структурованих плівках SiO2. На основі аналізу спектральних характеристик плазмонного резонансу наночастинок Ag встановлені умови їх диспергування та упорядкування.

 

Співробітники лабораторії

Плюто Юрій Володимирович, кандидат хімічних наук, завідувач лабораторії

тел.: (+380-44) 424 9027; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Назарчук Микола Олександрович, провідний інженер

тел.: (+380-44) 422 9653; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Насєдкін Дмитро Борисович, провідний інженер

тел.: (+380-44) 422 9653; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. , This email address is being protected from spambots. You need JavaScript enabled to view it.

Шаранда Людмила Федорівна, науковий співробітник, тел.: (+380-44) 422 9653;

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Публікації останніх років

1. Л.О. Давиденко, Б.Г. Місчанчук, А.Г. Гребенюк, В.О. Покровський, Ю.В. Плюто. Дослідження термолізу Cr(acac)3 на поверхні SiO2 та Al2O3 методом температурно-програмованої десорбційної мас-спектрометрії // Хімія, фізика та технологія поверхні. - 2012. -Т. 3, № 3. - С. 273-282.

2. L. Davydenko, B. Mischanchuk, V. Pokrovskiy, I. Babich, Yu. Plyuto. TPD-MS and IR Studies of Cr(acac)3 Binding Upon CVD at Silica and Alumina Surfaces. // Chem. Vap. Deposition – 2011. – V. 17. – P.123–127.

3. Д.Б. Насєдкін, І.В. Бабич, Ю.В. Плюто. Хімічні перетворення сполук сірки при синтезі терморозширеного графіту з бісульфату графіту за даними РФС // Сб. Поверхность. – 2011. – Вып. 3(18). – С.180–190.

4. Д.Б. Насєдкін, І.В. Бабич, Ю.В. Плюто. Вивчення графенових наноблоків в терморозширеному графіті // Доповіді Національної академії наук України. – 2011. – № 10. – С.119–124.

5. Д.Б.Насєдкін, І.В. Бабіч, Ю.В. Плюто Можливості застосування адсорбційного методу для визначення товщини наноблоків у терморозширеному графіті // Сб. Поверхность – 2010. Вып. 2(17) – С.190–196.

6. L.F. Sharanda, I.V. Plyuto, A.P. Shpak, I.V. Babich, M. Makkee, J.A. Moulijn, J. Stoch, and Yu.V. Plyuto. Chemical design of carbon coating on the alumina support. // Nanomaterials and Supramolecular Structures / A.P. Shpak, P.P. Gorbyk (eds.). - Springer Science+Business Media B.V., 2009. - Р.119-130.

7. L. Davydenko, Yu. Plyuto, E.M. Moser. Characterisation of sol-gel silica films doped with chromium (III) acetylacetonate // Thin Solid Films. - 2009. - V. 517. - P.3625–3628.

8. T. Levchenko, Yu. Plyuto, N. Kovtyukhova. Sol-gel template-free and template-structured silica films functionalisation with methylene blue dye and Ag nanoparticles // Sol-Gel Methods for Materials Processing / B.V. P. Innocenzi, Y.L. Zub and V.G. Kessler (eds.). - Springer Science + Business Media, 2008. - P.355-361.

9. L. Davydenko, Yu. Plyuto, E. M. Moser, Sol-gel silica films doped with chromium (III) acetylacetonate on aluminium substrate // Sol-Gel Methods for Materials Processing / B.V. P. Innocenzi, Y.L. Zub and V.G. Kessler (eds.). - Springer Science + Business Media, 2008. - P.283-290.

10. I.V. Babich, L.A. Davydenko, L.F. Sharanda, Yu.V. Plyuto, M. Makkee, J.A. Moulijn. Oxidative thermolysis of Mn(acac)3 on the surface of g-alumina support // Thermochimica Acta. - 2007.- V. 456, N2. - P.145-151.

11. T. Levchenko, Yu. Plyuto, N. Kovtyukhova. Functionalisation of the template-free and template-structured silica films synthesised on glass substrates by sol-gel technique // Journal of Sol-Gel Science and Technology. - 2007. - V.43, N3. - P.269-274.

12. L.F. Sharanda, Y.V. Plyuto, I.V. Babich, I.V. Plyuto, A.P. Shpak, J. Stoch, J.A. Moulijn. Synthesis and characterisation of hybrid carbon-alumina support // Applied Surface Science. - 2006. - V. 252, N 24. - P.8549-8556.

13. I.V. Plyuto, A.P. Shpak, J. Stoch, L.F. Sharanda, Y.V. Plyuto, I.V. Babich, M. Makkee, J. Moulijn. XPS characterisation of carbon-coated alumina support // Surface and Interface Analysis. - 2006. - V. 38, N5. - P.917-921.

 

 

Conferences

 

Ukrainian conference with international participation 

"CHEMISTRY, PHYSICS AND TECHNOLOGY OF SURFACE"

devoted to the 35th anniversary of the Chuiko Institute of Surface Chemistry of NAS of Ukraine

and

Workshop

"NANOSTRUCTURES AND NANOMATERIALS IN MEDICINE: CHALLENGES, TASKS AND PERSPECTIVES" 

 

 

26−27 May, 2021, Kyiv

 

Read more...

Наукові звіти відділів за 2020 рік

Реєстр наукових фахових видань України