small isc logo

Інститут хімії поверхні ім. О.О. Чуйка

Національної академії наук України
(офіційний сайт)

Лабораторія фотоніки оксидних наносистем

 

 

Завідувач лабораторії

Смірнова Наталія Петрівна

кандидат хімічних наук,
старший науковий співробітник

Телефон: + 38 (044) 422 96 98
Факс: + 38 (044) 424 35 67
E-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її. ;

 

В лабораторії працює 10 спеціалістів, серед них  1 доктор і 8 кандидатів наук. Співробітниками підрозділу опубліковано окремі глави в 5 колективних монографіях, 250 наукових статей, отримано 5 патентів на винаходи, захищено 6 кандидатських дисертацій.

 

Напрямки досліджень

  • синтез та дослідження структури, хімії поверхні, фотоелектрохімічних та фотокаталітичних властивостей мезопористих плівок на основі оксидів елементів IV групи та змішаних оксидних систем
  • вивчення механізмів фотоіндукованих процесів переносу електрону, протону та енергії в поверхневому шарі напівпровідникових композитів та при окисно-відновлювних перетворення органічних та неорганічних сполук.
  • розроблення нових нанорозмірних антимікробних матеріалів широкого спектру дії та кон’югованих нанобіотехнологічних протипухлинних препаратів з низькою токсичністю на основі наночастинок срібла, золота, міді в колоїдах та суспензіях дисперсного кремнезему
  • вивчення реакцій фоторозкладу органічних сполук у розчині (канцерогенні поліацени, барвники, антибіотики) та у газовій фазі (спирти, кетони); фотовідновлення неорганічних токсичних іонів (Cr(VI), Hg(II), Cu(II)).
  • дослідження стану інкорпорованих іонів перехідних та рідкоземельних металів в неорганічних матрицях (гелевому склі та боратах) методами стаціонарної та кінетичної фото- та радіолюмінесценції, оптичного поглинання та ЕПР.
  • синтез та дослідження фізико-хімічних властивостей змішаних оксидів та шаруватих подвійних гідроксидів, створення фотокаталізаторів на їх основі.

Практична направленість робіт пов’язана з розробкою наноматеріалів, що мають перспективу застосування як фотокаталізатори, електроди для електрохімічних сенсорів, супергідрофільні поверхні, здатні до самоочищення, орнаментальні покриття, оптичні елементи в пристроях для запису інформації, підкладки для МАЛДІ, ІЧ-, Раманівської, флуоресцентної спектроскопії, біосенсори, антимікробні покриття, бактерицидні середовища, системи для діагностики та протипухлинні препарати.

 

Основні результати за останні роки

Розроблено методи низькотемпературного золь-гель синтезу пористих нанорозмірних напівпровідникових оптично прозорих, хімічно та термічно стабільних плівок на основі діоксиду титана та його бінарних композицій з оксидами кремнію, заліза, цирконію, цинку шляхом сумісного гідролізу відповідних алкоксидів в присутності темплатних агентів. Структурні та оптичні властивості плівок охарактеризовані методами СЕМ, АСМ, малокутової дифракції рентгенівських променів, електронної спектроскопії та адсорбції-десорбції гексану.

Запропоновано методику отримання наночастинок Ag/Au з використанням триптофану (Trp) як відновника і стабілізатора наночастинок. Показано, що синтезовані Ag/Au/Trp наночастинки (5-15 нм розміром) формують стабільні агрегати із середнім розміром 370-450 нм. Встановлено, що Ag/Au/Trp наночастинки in vivo виявляють низьку гепатотоксичність і нефротоксичність.

Розчини колоїдного нанорозмірного срібла, гетерогенної системы Ag/SiO2 та біметалічні наночастинки Ag/Au,синтезовані фотохімічно, в колоїдних розчинах та пористих плівках кремнезему у формі сплаву та структур ядро/оболонка демонструють високу антимікробну активність по відношенню до ряду мікроорганізмів, присутніх в приміщеннях лікарень, та зберігають стабільність протягом кількох місяців.

Синтезовано високодисперсні Zn-Al змішані оксиди цитратним методом та термічним розкладом Zn-Al шаруватих подвійних гідроксидів (ШПГ), одержаних методом співосадження. Досліджена можливість їх реконструкції в ШПГ у водних суспензіях. Встановлено, що при гідратуванні оксидних систем, синтезованих цитратним методом, відбувається часткове перетворення змішаних оксидів у кристалічну фазу ШПГ. У випадку оксидів, одержаних при термообрабці Zn-Al ШПГ, досягається практично повне відновлення структури ШПГ. Вивчено вплив ультразвукової обробки, часу перемішування та присутності в оксидних системах оксиду магнію на процес гідратування Zn-Al змішаних оксидів. Досліджено кристалічну структуру, морфологію і текстурні властивості змішаних оксидів і продуктів їх гідратування, а також їх здатність до поглинання світла в УФ діапазоні.

Показано, що введення оксидів Zr та Si в структуру ТіО2 на стадії золь-гель синтезу покращує термічну стійкість, уповільнює спікання плівок та стабілізує нанокристалічну структуру з розвиненою пористістю. Каталітична активність мезопористих плівок TiO2 та TiO2/ZrO2 в процесі фотоокиснення парів етанолу збільшується із ростом питомої поверхні та кислотності поверхні зразків. Збільшення фотокаталітичної активності цирконій-вмісних плівок у порівнянні з немодифікованим TiO2 відбувається внаслідок анодного зсуву потенціалу (положення) валентної зони (встановлено із прямих фотоелектрохімічних досліджень).

Доведено можливість інкапсулювання наночастинок золота, срібла та міді за допомогою триптофану в розчинах та на поверхні дисперсного кремнезему. Амінокислота виконує подвійну функцію - ефективного відновника йонів золота та стабілізатора наночастинок Au. Йони срібла та міді відновлюються до нейтрального стану за допомогою хімічних відновників, після чого молекули триптофану стабілізують утворені наночастинки, сорбуючись на їх поверхні. Знайдено ефект гігантського комбінаційного розсіювання світла триптофаном поблизу наночастинок Сu в кремнеземних композитах та гасіння флуоресценції. Доведено хімічний механізм гігантського посилення ряду коливань молекул триптофану завдяки утворенню донорно-акцепторного комплексу та координації молекули до наночастинки через карбокси- та аміногрупи.

Дослідження монокристалічних та аморфних рентгенолюмінофорів – тетраборату літію (ТБЛ), легированого іонами Cu, Ag. Mn, Eu та Ce, методами фото-; радіо- та термолюмінесценції показало, що валентний та координаційний стан легуючих йонів та їх випромінювальна здатність визначаються структурою ТБЛ. Встановлено, що чутливість до γ-випромінювання у ТБЛ:Cu в 5 разів вища, ніж у промислового термолюмінесцентного дозиметру LiF:Mg,Ti(HarshowUSA), а висока чутливість нелегованого ТБЛ до теплових нейтронів зумовлює перспективність пари ТБЛ - ТБЛ:Cu для селективної дозиметрії в змішаних гамма-нейтронних полях.

 

Співробітники лабораторії

Смірнова Наталія Петрівнакандидат хімічних наук,

завідувач лабораторії, тел.:+38 (044) 4249465; e-mail:  Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

Вітюк Надія Василівна, кандидат хімічних наук, молодший науковий

співробітник, тел.:+38 (044) 4229698; e-mail:  Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

Єременко Ганна Михайлівнадоктор хімічних наук, провідний науковий

співробітник, тел.:+38 (044) 4229698; e-mail:   Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

Ліннік Оксана Петрівнакандидат хімічних наук, старший науковий

співробітник, тел.:+38 (044) 4229698; e-mail:  Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

Муха Юлія Петрівна, кандидат хімічних наук, молодший науковий

співробітник, тел.:+38 (044) 4229698; e-mail:   Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

Петрик Ірина Сергіївна, кандидат фізико-математичних наук, науковий

співробітник, тел.:+38 (044) 4229698; e-mail:  Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

Старух Галина Миколаївна, кандидат хімічних наук, старший науковий

співробітник, тел.:+38 (044) 4229698; e-mail:  Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

Ханіна Оксана Анатоліївна, кандидат хімічних наук, молодший науковий

співробітник, тел.:+38 (044) 4229698; e-mail:  Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

Чорна Наталія Олександрівна, провідний інженер, тел.:+38 (044) 4229698;

 e-mail:  Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

Яшан Галина Романівна, кандидат хімічних наук, молодший науковий

співробітник, тел.:+38 (044) 4229698; e-mail: jashan  Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

  

Публікації останніх років

1. I.O. Shmarakov, Iu.P. Mukha, V.V. Karavan, O.Yu. Chunikhin, M.M. Marchenko, N.P. Smirnova, A.M. Eremenko. Tryptophan assisted synthesis reduces bimetallic gold/silver nanoparticle cytotoxicity and improves biological activity // Nanobiomedicine – 2014. – V. 1. – P. 01 – 10.

2. N. Ostapenko, Yu. Ostapenko, O. Kerita, D. Peckus, V. Gulbinas, A. Eremenko, N. Smirnova, N. Surovtseva Luminescence features of nanocomposites of silicon-organic polymer/porous SiO2 and TiO2 films // Synthetic Metals – 2014. - V. 187. - P. 86 – 90.

3. A. Naumenko, Iu. Gnatiuk, N. Smirnova, A. Eremenko. Characterization of sol–gel derived TiO2/ZrO2 films and powders by Raman spectroscopy// Thin Solid Films. – 2012 – V. 520, N 14. – P.4541–4546.

4. O. Linnik, I. Petrik, N. Smirnova, V. Kandyba, O. Korduban, A. Eremenko, G. Socol, N. Stefan, C. Ristoscu, I.N. Mihailescu, C. Sutan, V. Malinovski, V. Djokic, D. Janakovic. TiO2/ZrO2 thin films synthesized by PLD in low pressure N-, C- and/or O-containin ggases: structural, optical and photocatalytic properties // Digest Journal of Nanomaterials and Biostructures. – 2012. – V. 7, N 3. – Р.1343–1352.

5. N.V. Gaponenko, V.S. Kortov, N. P. Smirnova, T.I. Orekhovskaya, I.A. Nikolaenko, V.A. Pustovarov, S.V. Zvonarev, A.I. Slesarev, O.P. Linnik, M.A. Zhukovskii, V.E. Borisenko. Sol-Gel derived structures for optical design and photocatalytic application // Microelectronic Engineering. – 2012. –V. 90. – Р.131–137. doi:10.1016 90

6. A.M. Eremenko, N.P. Smirnova, I.P. Mukha, A.P. Naumenko, N.M. Belyi, and S. Hayde. Effect of gold nanoparticles on an aerosil surface on the fluorescence and Raman spectra of adsorbed tryptophan // Theor.  Exp. Chem. – 2012. –V. 48, N 1. – Р.49–55.

7. Г.Н. Старух, Е.И. Оранская, С.И. Левицкая. Реконструкция смешанных оксидов в слоистые двойные гидроксиды // Укр. хим. журн. – 2014. – Т. 80, N 9. – С. 32–40.

8. Г.І. Корчак, О.В. Сурмашева, А.І. Міхієнкова, Г.М. Єременко, Ю.П. Муха, Н.П. Смірнова. Спосіб одержання розчинів нанорозмірного срібла // Патент України на корисну модель № 67484  від 27.02.2012.

9. Г.І. Корчак, О.В. Сурмашева, А.І. Міхієнкова, Г.М. Єременко, Ю.П. Муха, Н.П. Смірнова.  Антимікробний композит // Патент України на корисну модель № 67536 від 27.02.2012.

10. A. Eremenko, N. Smirnova, Iu. Gnatiuk, O. Linnik, N. Vityuk, Yu. Mukha, A. Korduban. Silver and gold nanoparticles on sol-gel TiO2, ZrO2, SiO2 // Surfaces: Optical Spectra, Photocatalytic Activity, Bactericide Properties / Chapter in Book 3: Composite Materials. – 2011. – P.2 – 32.

11. Yu. Gnatyuk, N. Smirnova, O. Korduban, A. Eremenko. Effect of zirconium in corporation on the stabilization of TiO2 mesoporous structure. // Sur. Interface Anal. – 2010. – V. 42. – P.1276–1280.

12. I. Mukha, А. Eremenko, G. Korchak, А. Michienkova. Physicochemical properties and antibacterial action of stabilized silver and gold nanostructures on the surface of disperse silica // Journal of Water Resources and Purification.– 2010. – V. 2. – P.131– 136.

13. G.V. Krylova, Yu.I. Gnatyuk, N.P. Smirnova, A.M. Eremenko, V.M. Gunko. Ag nanoparticles deposited onto silica, titania and zirconia mesoporous films synthesized by sol-gel template method // J. Sol-Gel Sci. Technol. – 2009. – V 50. – P.216–228.